Investigation of thermoelectric SiC ceramics for energy harvesting applications on supersonic vehicles leading–edges

Investigation of thermoelectric SiC ceramics for energy harvesting applications on supersonic... Utilizing thermoelectric technology to aerodynamic heat harvesting on the leading-edge is worth noticing in the thermal protection systems. In this paper, a nose-tip model in a supersonic flow field is developed to predict the thermoelectric performance of SiC ceramics structures. The generation performance is numerically investigated in terms of the computational fluid dynamics and the thermal conduction theory. The output power and energy efficiency of the nose-tip model are obtained with Mach number varying from 2·5–4·5. The generated power reaches 1·708 W/m 2 at a temperature difference of 757 K at M = 4·5 . With respect to the Thomson effect, the output power decreases rapidly. However, larger output power and energy efficiency would be obtained with the increase of Mach number, with or without considering the Thomson heat. Moreover, under the higher Mach numbers, larger range of output current value is available. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of Materials Science Springer Journals

Investigation of thermoelectric SiC ceramics for energy harvesting applications on supersonic vehicles leading–edges

Loading next page...
 
/lp/springer-journals/investigation-of-thermoelectric-sic-ceramics-for-energy-harvesting-JQYQP01h4Z
Publisher
Springer Journals
Copyright
Copyright © 2014 by Indian Academy of Sciences
Subject
Material Science; Materials Science, general; Engineering, general
ISSN
0250-4707
eISSN
0973-7669
D.O.I.
10.1007/s12034-014-0613-1
Publisher site
See Article on Publisher Site

Abstract

Utilizing thermoelectric technology to aerodynamic heat harvesting on the leading-edge is worth noticing in the thermal protection systems. In this paper, a nose-tip model in a supersonic flow field is developed to predict the thermoelectric performance of SiC ceramics structures. The generation performance is numerically investigated in terms of the computational fluid dynamics and the thermal conduction theory. The output power and energy efficiency of the nose-tip model are obtained with Mach number varying from 2·5–4·5. The generated power reaches 1·708 W/m 2 at a temperature difference of 757 K at M = 4·5 . With respect to the Thomson effect, the output power decreases rapidly. However, larger output power and energy efficiency would be obtained with the increase of Mach number, with or without considering the Thomson heat. Moreover, under the higher Mach numbers, larger range of output current value is available.

Journal

Bulletin of Materials ScienceSpringer Journals

Published: Feb 1, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off