Access the full text.
Sign up today, get DeepDyve free for 14 days.
The present study depicts the applicability of model tree (MT) technique to a large data set having large number of zero values. It is also aimed to develop a model that results in simple equations as that of stochastic models. The performance of MT is compared with conventional autoregressive integrated moving average (ARIMA) models. Forty-nine years of daily inflow data from Koyna Reservoir located in Maharashtra, India, are used for developing and testing the models. In this case study of developed MT models, the number of inputs is selected by trial and error and is varied from one lag to eight lags. Numerous MT models were developed by considering the model formulations of pruning and smoothing, whereas in ARIMA model, the number of inputs required for proper modeling is selected from autocorrelation function and partial autocorrelation function plots as well as through trial-and-error procedure. The performances of the developed models were evaluated using various statistical measures. On comparing the daily time step MT and ARIMA models, it is found that un-pruned and un-smoothed MT models performed better than ARIMA models. Even though the number of leaves (local linear equations with nonlinear way of finding them) is slightly larger, the low and peak values of the reservoir inflow are predicted better by MT model. From the results, it is concluded that for better modeling and to have a set of linear applicable equations for smaller time step reservoir inflow, MT technique can be a better choice than ARIMA model.
Journal of The Institution of Engineers (India): Series A – Springer Journals
Published: Mar 9, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.