Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract In the present paper, we report the results of an experimental study of the interaction region of a planar compression shock produced by a wedge in stream with the wake formed behind a cocurrent gas jet (H2, air, or Ar) injected into the flow. Depending on the gas jet parameters, three modes of interaction could be distinguished: a strong interaction, observed when the flow velocity in the wake was subsonic; a moderate interaction, observed when a subsonic flow region, bounded by a shock of almost conical shape, formed in the vicinity of the compression shock; and a neutral interaction. Three-dimensional non-stationary Euler equations were solved to numerically examine the interaction of an axisymmetric jet with an oblique shock wave. The obtained interaction regimes were found to be in a reasonable agreement with experimental data.
Thermophysics and Aeromechanics – Springer Journals
Published: Dec 1, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.