Influence of temperature on the microstructure of statoliths of the thumbstall squid Lolliguncula brevis

Influence of temperature on the microstructure of statoliths of the thumbstall squid Lolliguncula...  A laboratory study investigating the influence of temperature on the microstructure of statoliths of Lolliguncula brevis is described. Groups of squid were subjected to various temperature regimes for periods in excess of 30 d. Statoliths extracted from 20 squid were examined using a confocal microscope in laser scanning mode. The parts of the statoliths deposited during the course of the experiments were identified using either putative daily increment counts or from checks produced in response to capture and handling. These checks appear to consist of a series of prominent increments rather than reflecting a period of interrupted statolith growth. Increments deposited during the experiment generally displayed reduced contrast and clarity in comparison to the “wild” parts of the statolith, presumably in response to the constant conditions imposed in the laboratory. Average statolith growth rates observed over the course of the experiment showed a strong positive relationship to ambient temperature. A significant sex effect was apparent, with statoliths of female squid generally growing faster than those of males. Observed statolith growth rates at 15 °C were generally below 1 μm d−1, suggesting that the widths of daily increments produced under these conditions may approach the resolution limits of a light microscope. The implications for studies using increment numbers to estimate age are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Marine Biology Springer Journals

Influence of temperature on the microstructure of statoliths of the thumbstall squid Lolliguncula brevis

Marine Biology, Volume 136 (6) – Jul 17, 2000

Loading next page...
 
/lp/springer-journals/influence-of-temperature-on-the-microstructure-of-statoliths-of-the-UGh6BN04UJ
Publisher
Springer Journals
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Environment; Marine & Freshwater Sciences; Freshwater & Marine Ecology; Oceanography; Microbiology; Zoology
ISSN
0025-3162
eISSN
1432-1793
D.O.I.
10.1007/s002270000298
Publisher site
See Article on Publisher Site

Abstract

 A laboratory study investigating the influence of temperature on the microstructure of statoliths of Lolliguncula brevis is described. Groups of squid were subjected to various temperature regimes for periods in excess of 30 d. Statoliths extracted from 20 squid were examined using a confocal microscope in laser scanning mode. The parts of the statoliths deposited during the course of the experiments were identified using either putative daily increment counts or from checks produced in response to capture and handling. These checks appear to consist of a series of prominent increments rather than reflecting a period of interrupted statolith growth. Increments deposited during the experiment generally displayed reduced contrast and clarity in comparison to the “wild” parts of the statolith, presumably in response to the constant conditions imposed in the laboratory. Average statolith growth rates observed over the course of the experiment showed a strong positive relationship to ambient temperature. A significant sex effect was apparent, with statoliths of female squid generally growing faster than those of males. Observed statolith growth rates at 15 °C were generally below 1 μm d−1, suggesting that the widths of daily increments produced under these conditions may approach the resolution limits of a light microscope. The implications for studies using increment numbers to estimate age are discussed.

Journal

Marine BiologySpringer Journals

Published: Jul 17, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off