Access the full text.
Sign up today, get DeepDyve free for 14 days.
(1998)
Pi and theAGM,AStudy inAnalyticNumberTheory andComputational Complexity, Reprint of the 1987 Original
(1995)
Some properties of quasiconformal distortion functions
B. Bhayo, M. Vuorinen (2011)
On generalized complete elliptic integrals and modular functionsProceedings of the Edinburgh Mathematical Society, 55
G. Anderson, M. Vamanamurthy, M. Vuorinen (1997)
Conformal Invariants, Inequalities, and Quasiconformal Maps
Fei Wang, Jian-hui He, L. Yin, Feng (祁锋) (2019)
Monotonicity properties and inequalities related to generalized Grötzsch ring functionsOpen Mathematics, 17
Miao-Kun Wang, Y. Chu, S. Qiu (2015)
Sharp bounds for generalized elliptic integrals of the first kindJournal of Mathematical Analysis and Applications, 429
B. Berndt, S. Bhargava, F. Garvan (1995)
Ramanujan’s Theories of Elliptic Functions to Alternative BasesTransactions of the American Mathematical Society, 347
Y. Chu, Miao-Kun Wang (2011)
Optimal Lehmer Mean Bounds for the Toader MeanResults in Mathematics, 61
S. Takeuchi (2014)
A new form of the generalized complete elliptic integralsarXiv: Classical Analysis and ODEs
Zhen-Hang Yang, Y. Chu (2017)
A monotonicity property involving the generalized elliptic integral of the first kindMathematical Inequalities & Applications
Zhen-Hang Yang, Wei-Mao Qian, Y. Chu (2018)
Monotonicity properties and bounds involving the complete elliptic integrals of the first kindMathematical Inequalities & Applications
Tie-hong Zhao, Zai-Yin He, Y. Chu (2020)
On some refinements for inequalities involving zero-balanced hypergeometric function, 5
Miao-Kun Wang, Y. Chu, S. Qiu (2015)
Sharp bounds for generalized elliptic integrals of the first kindarXiv: Classical Analysis and ODEs
J. Thomas (1926)
Conformal Invariants.Proceedings of the National Academy of Sciences of the United States of America, 12 6
Miao-Kun Wang, Yong-min Li, Y. Chu (2018)
Inequalities and infinite product formula for Ramanujan generalized modular equation functionThe Ramanujan Journal, 46
V. Heikkala, M. Vamanamurthy, M. Vuorinen (2007)
Generalized Elliptic IntegralsComputational Methods and Function Theory, 9
T-R Huang, S-Y Tan, X-Y Ma, Y-M Chu (2018)
Monotonicity properties and bounds for the complete p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-elliptic integralsJ. Inequal. Appl., 239
G. Anderson, S. Qiu, M. Vamanamurthy (1998)
Elliptic Integral Inequalities, with ApplicationsConstructive Approximation, 14
Y. Chu, Miao-Kun Wang, S. Qiu (2012)
Optimal combinations bounds of root-square and arithmetic means for Toader meanProceedings - Mathematical Sciences, 122
Miao-Kun Wang, S. Qiu, Y. Chu (2018)
Infinite series formula for Hübner upper bound function with applications to Hersch-Pfluger distortion functionMathematical Inequalities & Applications
Miao-Kun Wang, Y. Chu, Y. Qiu, S. Qiu (2011)
An optimal power mean inequality for the complete elliptic integralsAppl. Math. Lett., 24
Zhen-Hang Yang, Wei-Mao Qian, Y. Chu, Wen Zhang (2017)
Monotonicity rule for the quotient of two functions and its applicationJournal of Inequalities and Applications, 2017
G. Anderson, S. Qiu, M. Vamanamurthy, M. Vuorinen (2000)
Generalized elliptic integrals and modular equationsPacific Journal of Mathematics, 192
H. Alzer, Kendall Richards (2015)
A note on a function involving complete elliptic integrals: monotonicity, convexity, inequalitiesAnalysis Mathematica, 41
Y. Chu, Miao-Kun Wang, S. Qiu, Yue-Ping Jiang (2012)
Bounds for complete elliptic integrals of the second kind with applicationsComput. Math. Appl., 63
Guo-Jing Hai, Tie-hong Zhao (2020)
Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring functionJournal of Inequalities and Applications, 2020
Tie-hong Zhao, Miao-Kun Wang, Y. Chu (2021)
Monotonicity and convexity involving generalized elliptic integral of the first kindRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 115
Y. Chu, Y. Qiu, Miao-Kun Wang (2012)
Hölder mean inequalities for the complete elliptic integralsIntegral Transforms and Special Functions, 23
Xiaohui Zhang (2017)
On the generalized modulusThe Ramanujan Journal, 43
T. Huang, Shenyang Tan, Xiao-Yan Ma, Y. Chu (2018)
Monotonicity properties and bounds for the complete p-elliptic integralsJournal of Inequalities and Applications, 2018
Tie-hong Zhao, Zai-Yin He, Y. Chu (2020)
Sharp Bounds for the Weighted Hölder Mean of the Zero-Balanced Generalized Complete Elliptic IntegralsComputational Methods and Function Theory, 21
Miao-Kun Wang, Y. Chu (2017)
Refinements of transformation inequalities for zero-balanced hypergeometric functionsActa Mathematica Scientia, 37
Wei-Mao Qian, Y. Chu (2017)
Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parametersJournal of Inequalities and Applications, 2017
Xiaohui Zhang (2015)
Solution to a conjecture on the Legendre M-function with an application to the generalized modulusJournal of Mathematical Analysis and Applications, 431
Miao-Kun Wang, Y. Chu (2018)
Landen inequalities for a class of hypergeometric functions with applicationsMathematical Inequalities & Applications
M. Abramowitz, I. Stegun, David Miller (1965)
Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55)Journal of Applied Mechanics, 32
Zhen-Hang Yang, Wei-Mao Qian, Y. Chu, Wen Zhang (2018)
On approximating the arithmetic-geometric mean and complete elliptic integral of the first kindJournal of Mathematical Analysis and Applications
J. Wendel (1948)
Note on the Gamma FunctionAmerican Mathematical Monthly, 55
H. Alzer, S. Qiu (2004)
Monotonicity theorems and inequalities for the complete elliptic integralsJournal of Computational and Applied Mathematics, 172
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations
In this paper, we deal with the generalized Grötzsch ring function μa(r)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mu _a(r)$$\end{document} for r∈(0,1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$r\in (0,1)$$\end{document} in the theory of the Ramanujan generalized modular equation and present new inequalities for μa(r)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mu _a(r)$$\end{document}.
Computational Methods and Function Theory – Springer Journals
Published: Sep 1, 2022
Keywords: Modular equation; Generalized elliptic integrals; Generalized Grötzsch ring function; Geometric function theory; 33E05; 33C05
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.