Improvement of photosynthetic CO2 fixation at high light intensity through reduction of chlorophyll antenna size

Improvement of photosynthetic CO2 fixation at high light intensity through reduction of... At elevated light intensities (greater than ∼200 µE/[m2·s]), the kinetic imbalance between the rate of photon excitation and thermally activated electron transport results in saturation of the rate of photosynthesis. Since maximum terrestrial solar radiation can reach 200 µE/(m2·s), a significant opportunity exists to improve photosynthetic efficiency at elevated light intensities by achieving a kinetic balance between photon excitation and electron transport, especially in designed large-scale photosynthetic reactors in which a low-cost and efficient biomass production system is desired. One such strategy is a reduction in chlorophyll (chl) antenna size in relation to the reaction center that it serves. In this article, we report recent progress in this area of research. Light-saturation studies for CO2 fixation were performed on an antenna-deficient mutant of Chlamydomonas (DS521) and the wild type (DES15) with 700 ppm of CO2 in air. The light-saturated rate for CO2 assimilation in the mutant DS521 was about two times higher (187 µmol/[h·mg of chl]) than that of the wild type, DES15 (95 µmol/[h·mg of chl]). Significantly, a partial linearization of the light-saturation curve was also observed. These results confirmed that DS521 has a smaller relative chl antenna size and demonstrated that reduction of relative antenna size can improve the overall efficiency of photon utilization at higher light intensities. The antenna-deficient mutant DS521 can provide significant resistance to photoinhibition, in addition to improvement in the overall efficiency of CO2 fixation at high light. The experimental data reported herein support the idea that reduction in chl antenna size could have significant implications for both fundamental understanding of photosynthesis and potential application to improve photosynthetic CO2 fixation efficiency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Biochemistry and Biotechnology Springer Journals

Improvement of photosynthetic CO2 fixation at high light intensity through reduction of chlorophyll antenna size

Loading next page...
 
/lp/springer-journals/improvement-of-photosynthetic-co2-fixation-at-high-light-intensity-KvCQLLAhm7
Publisher
Springer Journals
Copyright
Copyright © 2002 by Humana Press Inc.
Subject
Chemistry; Biotechnology; Biochemistry, general
ISSN
0273-2289
eISSN
1559-0291
D.O.I.
10.1385/ABAB:98-100:1-9:37
Publisher site
See Article on Publisher Site

Abstract

At elevated light intensities (greater than ∼200 µE/[m2·s]), the kinetic imbalance between the rate of photon excitation and thermally activated electron transport results in saturation of the rate of photosynthesis. Since maximum terrestrial solar radiation can reach 200 µE/(m2·s), a significant opportunity exists to improve photosynthetic efficiency at elevated light intensities by achieving a kinetic balance between photon excitation and electron transport, especially in designed large-scale photosynthetic reactors in which a low-cost and efficient biomass production system is desired. One such strategy is a reduction in chlorophyll (chl) antenna size in relation to the reaction center that it serves. In this article, we report recent progress in this area of research. Light-saturation studies for CO2 fixation were performed on an antenna-deficient mutant of Chlamydomonas (DS521) and the wild type (DES15) with 700 ppm of CO2 in air. The light-saturated rate for CO2 assimilation in the mutant DS521 was about two times higher (187 µmol/[h·mg of chl]) than that of the wild type, DES15 (95 µmol/[h·mg of chl]). Significantly, a partial linearization of the light-saturation curve was also observed. These results confirmed that DS521 has a smaller relative chl antenna size and demonstrated that reduction of relative antenna size can improve the overall efficiency of photon utilization at higher light intensities. The antenna-deficient mutant DS521 can provide significant resistance to photoinhibition, in addition to improvement in the overall efficiency of CO2 fixation at high light. The experimental data reported herein support the idea that reduction in chl antenna size could have significant implications for both fundamental understanding of photosynthesis and potential application to improve photosynthetic CO2 fixation efficiency.

Journal

Applied Biochemistry and BiotechnologySpringer Journals

Published: Apr 16, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off