Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting pigment

Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting... Microalgal productivity was examined using both a wild type and a phycocyanin-deficient mutant of Synechocystis PCC 6714 (PD-1). The culture was conducted at various light intensities under low and high cell densities in a continuous culture system. At low light intensity, photosynthetic productivity was almost the same for both low and high cell densities. However, at higher light intensities photosynthetic productivity was higher in mutant PD-1 than in the wild type. At 2000 μmol photon m−2 s−1 the productivity was 50% higher in mutant PD-1. This result is consistent with our first report (Nakajima & Ueda, 1997), which showed that photosynthetic productivity can be improved by reducing the light harvesting pigment content in high cell density cultures at high light intensities. It is concluded that the technology for reducing LHP content is a useful method for improving photosynthetic productivity in algal mass production. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Phycology Springer Journals

Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting pigment

Journal of Applied Phycology, Volume 11 (2) – Sep 29, 2004

Loading next page...
 
/lp/springer-journals/improvement-of-microalgal-photosynthetic-productivity-by-reducing-the-rtnumyyFWn
Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Plant Sciences; Freshwater & Marine Ecology; Plant Physiology; Ecology
ISSN
0921-8971
eISSN
1573-5176
D.O.I.
10.1023/A:1008015224029
Publisher site
See Article on Publisher Site

Abstract

Microalgal productivity was examined using both a wild type and a phycocyanin-deficient mutant of Synechocystis PCC 6714 (PD-1). The culture was conducted at various light intensities under low and high cell densities in a continuous culture system. At low light intensity, photosynthetic productivity was almost the same for both low and high cell densities. However, at higher light intensities photosynthetic productivity was higher in mutant PD-1 than in the wild type. At 2000 μmol photon m−2 s−1 the productivity was 50% higher in mutant PD-1. This result is consistent with our first report (Nakajima & Ueda, 1997), which showed that photosynthetic productivity can be improved by reducing the light harvesting pigment content in high cell density cultures at high light intensities. It is concluded that the technology for reducing LHP content is a useful method for improving photosynthetic productivity in algal mass production.

Journal

Journal of Applied PhycologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off