In Arabidopsis, CBF transcription factors bind to and activate certain cold-regulated (COR) gene promoters during cold acclimation. Consistent with the prevailing model that histone acetylation and nucleosomal depletion correspond with transcriptionally active genes, we now report that H3 acetylation increases and nucleosome occupancy decreases at COR gene promoters upon cold acclimation. Overexpression of CBF1 resulted in a constitutive increase in H3 acetylation and decrease in nucleosome occupancy, consistent with the constitutive activation of COR gene expression. Overexpression of a truncated form of CBF2 lacking its transcriptional activation domain resulted in a cold-stimulated increase in H3 acetylation, but no change in nucleosomal occupancy or COR gene expression, indicating that histone acetylation is congruent with but not sufficient for cold-activation of COR gene expression. Plants homozygous for T-DNA disruption alleles of GCN5 (encoding a histone acetyltransferase) or ADA2b (a GCN5-interacting protein) show diminished expression of COR genes during cold acclimation. Contrary to expectations, H3 acetylation at COR gene promoters was stimulated upon cold acclimation in ada2b and gcn5 plants as in wild type plants, but the decrease in nucleosome occupancy was diminished. Thus, GCN5 is not the HAT responsible for histone acetylation at COR gene promoters during cold acclimation. Several other HAT mutant plants were also tested; although some do affect COR gene expression, none affected histone acetylation. Therefore, H3 acetylation at the COR gene promoters is not solely dependent on any of the HATs tested.
Plant Molecular Biology – Springer Journals
Published: Jul 27, 2010
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create lists to | ||
Export lists, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
PDF Discount | 20% off | |
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.
ok to continue