Heterotrimeric Gα subunit from wheat (Triticum aestivum), GA3, interacts with the calcium-binding protein, Clo3, and the phosphoinositide-specific phospholipase C, PI-PLC1

Heterotrimeric Gα subunit from wheat (Triticum aestivum), GA3, interacts with the... The canonical Gα subunit of the heterotrimeric G protein complex from wheat (Triticum aestivum), GA3, and the calcium-binding protein, Clo3, were revealed to interact both in vivo and in vitro and Clo3 was shown to enhance the GTPase activity of GA3. Clo3 is a member of the caleosin gene family in wheat with a single EF-hand domain and is induced during cold acclimation. Bimolecular Fluorescent Complementation (BiFC) was used to localize the interaction between Clo3 and GA3 to the plasma membrane (PM). Even though heterotrimeric G-protein signaling and Ca2+ signaling have both been shown to play a role in the response to environmental stresses in plants, little is known about the interaction between calcium-binding proteins and Gα. The GAP activity of Clo3 towards GA3 suggests it may play a role in the inactivation of GA3 as part of the stress response in plants. GA3 was also shown to interact with the phosphoinositide-specific phospholipase C, PI-PLC1, not only in the PM but also in the endoplasmic reticulum (ER). Surprisingly, Clo3 was also shown to interact with PI-PLC1 in the PM and ER. In vitro analysis of the protein–protein interaction showed that the interaction of Clo3 with GA3 and PI-PLC1 is enhanced by high Ca2+ levels. Three-way affinity characterizations with GA3, Clo3 and PI-PLC1 showed the interaction with Clo3 to be competitive, which suggests that Clo3 may play a role in the Ca2+-triggered feedback regulation of both GA3 and PI-PLC1. This hypothesis was further supported by the demonstration that Clo3 has GAP activity with GA3. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Heterotrimeric Gα subunit from wheat (Triticum aestivum), GA3, interacts with the calcium-binding protein, Clo3, and the phosphoinositide-specific phospholipase C, PI-PLC1

Loading next page...
 
/lp/springer-journals/heterotrimeric-g-subunit-from-wheat-triticum-aestivum-ga3-interacts-QPRiPST5Wy
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Plant Sciences; Biochemistry, general
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-011-9801-1
Publisher site
See Article on Publisher Site

Abstract

The canonical Gα subunit of the heterotrimeric G protein complex from wheat (Triticum aestivum), GA3, and the calcium-binding protein, Clo3, were revealed to interact both in vivo and in vitro and Clo3 was shown to enhance the GTPase activity of GA3. Clo3 is a member of the caleosin gene family in wheat with a single EF-hand domain and is induced during cold acclimation. Bimolecular Fluorescent Complementation (BiFC) was used to localize the interaction between Clo3 and GA3 to the plasma membrane (PM). Even though heterotrimeric G-protein signaling and Ca2+ signaling have both been shown to play a role in the response to environmental stresses in plants, little is known about the interaction between calcium-binding proteins and Gα. The GAP activity of Clo3 towards GA3 suggests it may play a role in the inactivation of GA3 as part of the stress response in plants. GA3 was also shown to interact with the phosphoinositide-specific phospholipase C, PI-PLC1, not only in the PM but also in the endoplasmic reticulum (ER). Surprisingly, Clo3 was also shown to interact with PI-PLC1 in the PM and ER. In vitro analysis of the protein–protein interaction showed that the interaction of Clo3 with GA3 and PI-PLC1 is enhanced by high Ca2+ levels. Three-way affinity characterizations with GA3, Clo3 and PI-PLC1 showed the interaction with Clo3 to be competitive, which suggests that Clo3 may play a role in the Ca2+-triggered feedback regulation of both GA3 and PI-PLC1. This hypothesis was further supported by the demonstration that Clo3 has GAP activity with GA3.

Journal

Plant Molecular BiologySpringer Journals

Published: Jul 3, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off