Handling Missing Data by Re-approaching Non-respondents

Handling Missing Data by Re-approaching Non-respondents When handling missing data, a researcher should be aware of the mechanism underlying the missingness. In the presence of non-randomly missing data, a model of the missing data mechanism should be included in the analyses to prevent the analyses based on the data from becoming biased. Modeling the missing data mechanism, however, is a difficult task. One way in which knowledge about the missing data mechanism may be obtained is by collecting additional data from non-respondents. In this paper the method of re-approaching respondents who did not answer all questions of a questionnaire is described. New answers were obtained from a sample of these non-respondents and the reason(s) for skipping questions was (were) probed for. The additional data resulted in a larger sample and was used to investigate the differences between respondents and non-respondents, whereas probing for the causes of missingness resulted in more knowledge about the nature of the missing data patterns. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

Handling Missing Data by Re-approaching Non-respondents

Loading next page...
 
/lp/springer-journals/handling-missing-data-by-re-approaching-non-respondents-fFdSvuzrmW
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Social Sciences; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1023/A:1004338522505
Publisher site
See Article on Publisher Site

Abstract

When handling missing data, a researcher should be aware of the mechanism underlying the missingness. In the presence of non-randomly missing data, a model of the missing data mechanism should be included in the analyses to prevent the analyses based on the data from becoming biased. Modeling the missing data mechanism, however, is a difficult task. One way in which knowledge about the missing data mechanism may be obtained is by collecting additional data from non-respondents. In this paper the method of re-approaching respondents who did not answer all questions of a questionnaire is described. New answers were obtained from a sample of these non-respondents and the reason(s) for skipping questions was (were) probed for. The additional data resulted in a larger sample and was used to investigate the differences between respondents and non-respondents, whereas probing for the causes of missingness resulted in more knowledge about the nature of the missing data patterns.

Journal

Quality & QuantitySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off