Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Genotype × Environment Interaction Effects on Cashew (Anacardium occidentale L.) Flower Sex Type Expression

Genotype × Environment Interaction Effects on Cashew (Anacardium occidentale L.) Flower Sex Type... Flowering is one of the most critical determinants of nut tree crop yield and flower sex types that are predictive of high yields are needed to enhance the effectiveness of cashew varietal development. Under tropical and subtropical climates, cashew flowering coincides with the annual drought and could be affected by high moisture and temperature stress. The genotype × environment interaction effects on flower sex type expression of cashew has never been explored. Our current study employed a multi-environment trial established in two contrasting agro-ecological zones to elucidate the effects of genotype and environment on male, hermaphrodite and sterile flower sex type expression. Our results showed that most of the variability found were largely due to environmental influence (˃80%) and hermaphrodite and sterile flower sex types were the most sensitive. Male, hermaphrodite and sterile flower numbers ranged from 61.6–107.1, 5.6–38.7 and 1.5–14.4 per panicle respectively. The GGE Biplot model employed to analyze the interaction showed that clones SG004, SB9 and KT1 were stable for all the flower sex types. Clones that gave high number of male and hermaphrodite flowers had higher yields in suboptimal environments whereas in near optimal environments, clones that gave low number of sterile flowers had high yields. While our study highlights the benefit of employing a multi-environment trial to identify cashew clones with superior flowering characteristics to face future variability of environmental conditions attributed to global warming, the effectiveness of cashew flower sex type in predicting nut yield could vary with prevailing environmental conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tropical Plant Biology Springer Journals

Genotype × Environment Interaction Effects on Cashew (Anacardium occidentale L.) Flower Sex Type Expression

Loading next page...
 
/lp/springer-journals/genotype-environment-interaction-effects-on-cashew-anacardium-xZdNtMxQHO

References (54)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
ISSN
1935-9756
eISSN
1935-9764
DOI
10.1007/s12042-022-09310-0
Publisher site
See Article on Publisher Site

Abstract

Flowering is one of the most critical determinants of nut tree crop yield and flower sex types that are predictive of high yields are needed to enhance the effectiveness of cashew varietal development. Under tropical and subtropical climates, cashew flowering coincides with the annual drought and could be affected by high moisture and temperature stress. The genotype × environment interaction effects on flower sex type expression of cashew has never been explored. Our current study employed a multi-environment trial established in two contrasting agro-ecological zones to elucidate the effects of genotype and environment on male, hermaphrodite and sterile flower sex type expression. Our results showed that most of the variability found were largely due to environmental influence (˃80%) and hermaphrodite and sterile flower sex types were the most sensitive. Male, hermaphrodite and sterile flower numbers ranged from 61.6–107.1, 5.6–38.7 and 1.5–14.4 per panicle respectively. The GGE Biplot model employed to analyze the interaction showed that clones SG004, SB9 and KT1 were stable for all the flower sex types. Clones that gave high number of male and hermaphrodite flowers had higher yields in suboptimal environments whereas in near optimal environments, clones that gave low number of sterile flowers had high yields. While our study highlights the benefit of employing a multi-environment trial to identify cashew clones with superior flowering characteristics to face future variability of environmental conditions attributed to global warming, the effectiveness of cashew flower sex type in predicting nut yield could vary with prevailing environmental conditions.

Journal

Tropical Plant BiologySpringer Journals

Published: Jun 1, 2022

Keywords: Anacardium occidentale L.; Climate change; Genotype × environment interaction; Male flower; Hermaphrodite flower and Sterile/abnormal flower

There are no references for this article.