Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Genetic Diversity and Population Structure of Native and Introduced Date Palm (Phoenix dactylifera) Germplasm in the United Arab Emirates

Genetic Diversity and Population Structure of Native and Introduced Date Palm (Phoenix... Date palm (Phoenix dactylifera) has been cultivated since ancient times, but little is known about its genetic diversity and population structure. Examination of 80 date palm accessions grown in the United Arab Emirates, including a collection of varieties from around the world, using 21 microsatellite markers, indicated extensive genetic diversity, with many accessions heterozygous for most markers. The average number of alleles per locus (19), expected heterozygosity (0.7), observed heterozygosity (0.25) and fixation indices (Fst = 0.6, Rst = 0.72) demonstrated significant population structure. Analysis with a model-based Baysian method, STRUCTURE 2.4.1, indicated that the 80 accessions could be broadly divided into nine groups. Independent samples of genotypes with the same name, collected from different experimental stations, usually clustered together. The study was enriched for germplasm from the United Arab Emirates (UAE), and one STRUCTURE-derived grouping consisted mainly of UAE accessions. In a few other clusters, several genotypes from the UAE, Iraq and Oman grouped together. Two clusters included accessions from both North Africa and the Middle East. Many accessions in the STRUCTURE-derived populations appeared to be genetic admixtures. The results indicated a broad dissemination of related germplasms across date-palm growing regions of the world, with very few alleles that still correlate with particular regional germplasms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tropical Plant Biology Springer Journals

Genetic Diversity and Population Structure of Native and Introduced Date Palm (Phoenix dactylifera) Germplasm in the United Arab Emirates

Loading next page...
 
/lp/springer-journals/genetic-diversity-and-population-structure-of-native-and-introduced-C65MI0ePpu

References (41)

Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Plant Sciences; Plant Genetics & Genomics; Plant Breeding/Biotechnology; Plant Ecology; Transgenics
ISSN
1935-9756
eISSN
1935-9764
DOI
10.1007/s12042-014-9135-7
Publisher site
See Article on Publisher Site

Abstract

Date palm (Phoenix dactylifera) has been cultivated since ancient times, but little is known about its genetic diversity and population structure. Examination of 80 date palm accessions grown in the United Arab Emirates, including a collection of varieties from around the world, using 21 microsatellite markers, indicated extensive genetic diversity, with many accessions heterozygous for most markers. The average number of alleles per locus (19), expected heterozygosity (0.7), observed heterozygosity (0.25) and fixation indices (Fst = 0.6, Rst = 0.72) demonstrated significant population structure. Analysis with a model-based Baysian method, STRUCTURE 2.4.1, indicated that the 80 accessions could be broadly divided into nine groups. Independent samples of genotypes with the same name, collected from different experimental stations, usually clustered together. The study was enriched for germplasm from the United Arab Emirates (UAE), and one STRUCTURE-derived grouping consisted mainly of UAE accessions. In a few other clusters, several genotypes from the UAE, Iraq and Oman grouped together. Two clusters included accessions from both North Africa and the Middle East. Many accessions in the STRUCTURE-derived populations appeared to be genetic admixtures. The results indicated a broad dissemination of related germplasms across date-palm growing regions of the world, with very few alleles that still correlate with particular regional germplasms.

Journal

Tropical Plant BiologySpringer Journals

Published: Feb 20, 2014

There are no references for this article.