Access the full text.
Sign up today, get DeepDyve free for 14 days.
Deep neural networks have attained great success in handling high dimensional data, especially images. However, generating naturalistic images containing ginormous subjects for different tasks like image classification, segmentation, object detection, reconstruction, etc., is continued to be a difficult task. Generative modelling has the potential to learn any kind of data distribution in an unsupervised manner. Variational autoencoder (VAE), autoregressive models, and generative adversarial network (GAN) are the popular generative modelling approaches that generate data distributions. Among these, GANs have gained much attention from the research community in recent years in terms of generating quality images and data augmentation. In this context, we collected research articles that employed GANs for solving various tasks from popular databases and summarized them based on their application. The main objective of this article is to present the nuts and bolts of GANs, state-of-the-art related work and its applications, evaluation metrics, challenges involved in training GANs, and benchmark datasets that would benefit naive and enthusiastic researchers who are interested in working on GANs.
International Journal of Multimedia Information Retrieval – Springer Journals
Published: Oct 24, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.