Gata-6 expression is decreased in diaphragmatic and pulmonary mesenchyme of fetal rats with nitrofen-induced congenital diaphragmatic hernia

Gata-6 expression is decreased in diaphragmatic and pulmonary mesenchyme of fetal rats with... Purpose Congenital diaphragmatic hernia (CDH) and associated pulmonary hypoplasia are thought to be caused by a malformation of the underlying diaphragmatic and airway mesenchyme. GATA binding protein 6 (Gata-6) is a zinc finger- containing transcription factor that plays a crucial role during diaphragm and lung development. In the primordial diaphragm, Gata-6 expression is restricted to mesenchymal compartments of the pleuroperitoneal folds (PPFs). In addition, Gata-6 is essential for airway branching morphogenesis through upregulation of mesenchymal signaling. Recently, mutations in Gata- 6 have been linked to human CDH. We hypothesized that diaphragmatic and pulmonary Gata-6 expression is decreased in the nitrofen-induced CDH model. Methods Time-mated rats were exposed to either nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms (n = 72) and lungs (n = 48) were microdissected on selected timepoints D13, D15 and D18, and divided into control and nitrofen- exposed specimens (n = 12 per sample, timepoint and experimental group, respectively). Diaphragmatic and pulmonary gene expression of Gata-6 was analyzed by qRT-PCR. Immunofluorescence-double staining for Gata-6 was combined with the diaphragmatic mesenchymal marker Gata-4 and the pulmonary mesenchymal marker Fgf-10 to evaluate protein expression and localization in fetal diaphragms and lungs. Results Relative mRNA expression levels http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pediatric Surgery International Springer Journals

Gata-6 expression is decreased in diaphragmatic and pulmonary mesenchyme of fetal rats with nitrofen-induced congenital diaphragmatic hernia

Loading next page...
 
/lp/springer-journals/gata-6-expression-is-decreased-in-diaphragmatic-and-pulmonary-WaO08PaxwF
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Medicine & Public Health; Pediatrics; Surgery; Pediatric Surgery
ISSN
0179-0358
eISSN
1437-9813
D.O.I.
10.1007/s00383-017-4219-8
Publisher site
See Article on Publisher Site

Abstract

Purpose Congenital diaphragmatic hernia (CDH) and associated pulmonary hypoplasia are thought to be caused by a malformation of the underlying diaphragmatic and airway mesenchyme. GATA binding protein 6 (Gata-6) is a zinc finger- containing transcription factor that plays a crucial role during diaphragm and lung development. In the primordial diaphragm, Gata-6 expression is restricted to mesenchymal compartments of the pleuroperitoneal folds (PPFs). In addition, Gata-6 is essential for airway branching morphogenesis through upregulation of mesenchymal signaling. Recently, mutations in Gata- 6 have been linked to human CDH. We hypothesized that diaphragmatic and pulmonary Gata-6 expression is decreased in the nitrofen-induced CDH model. Methods Time-mated rats were exposed to either nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms (n = 72) and lungs (n = 48) were microdissected on selected timepoints D13, D15 and D18, and divided into control and nitrofen- exposed specimens (n = 12 per sample, timepoint and experimental group, respectively). Diaphragmatic and pulmonary gene expression of Gata-6 was analyzed by qRT-PCR. Immunofluorescence-double staining for Gata-6 was combined with the diaphragmatic mesenchymal marker Gata-4 and the pulmonary mesenchymal marker Fgf-10 to evaluate protein expression and localization in fetal diaphragms and lungs. Results Relative mRNA expression levels

Journal

Pediatric Surgery InternationalSpringer Journals

Published: Dec 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off