Functional characterization of chitinase from Cydia pomonella granulovirus

Functional characterization of chitinase from Cydia pomonella granulovirus Baculovirus chitinases (V-CHIAs) play a crucial role in the terminal liquefaction of virus-infected larvae after death. Although v-chiAs from nucleopolyhedroviruses (NPVs) have been well characterized, little is known about v-chiAs from granuloviruses (GVs). We characterized the v-chiA of Cydia pomonella GV (CpGV) by constructing a recombinant Bombyx mori NPV (BmNPV) in which BmNPV v-chiA was replaced by CpGV v-chiA (103CpGV virus). CpGV v-chiA encoded an approximately 70-kDa chitinase with an exo-type substrate preference. CpGV V-CHIA lacked a C-terminal KDEL endoplasmic reticulum retention motif and was suggested to be a secretory protein. Terminal host liquefaction of B. mori larvae and proper folding of BmNPV-encoded cysteine protease (BmNPV V-CATH) were observed following infection with 103CpGV, indicating that CpGV v-chiA is able to compensate for the absence of its BmNPV counterpart. Our data suggest that the molecular interaction between V-CHIA and V-CATH may be conserved across a broad range of lepidopteran GVs and NPVs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Functional characterization of chitinase from Cydia pomonella granulovirus

Loading next page...
1
 
/lp/springer-journals/functional-characterization-of-chitinase-from-cydia-pomonella-lLQBuIv2I4
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-007-1000-7
Publisher site
See Article on Publisher Site

Abstract

Baculovirus chitinases (V-CHIAs) play a crucial role in the terminal liquefaction of virus-infected larvae after death. Although v-chiAs from nucleopolyhedroviruses (NPVs) have been well characterized, little is known about v-chiAs from granuloviruses (GVs). We characterized the v-chiA of Cydia pomonella GV (CpGV) by constructing a recombinant Bombyx mori NPV (BmNPV) in which BmNPV v-chiA was replaced by CpGV v-chiA (103CpGV virus). CpGV v-chiA encoded an approximately 70-kDa chitinase with an exo-type substrate preference. CpGV V-CHIA lacked a C-terminal KDEL endoplasmic reticulum retention motif and was suggested to be a secretory protein. Terminal host liquefaction of B. mori larvae and proper folding of BmNPV-encoded cysteine protease (BmNPV V-CATH) were observed following infection with 103CpGV, indicating that CpGV v-chiA is able to compensate for the absence of its BmNPV counterpart. Our data suggest that the molecular interaction between V-CHIA and V-CATH may be conserved across a broad range of lepidopteran GVs and NPVs.

Journal

Archives of VirologySpringer Journals

Published: Sep 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off