Foraging behaviour of planktivorous fish in artificial vegetation: the effects on swimming and feeding

Foraging behaviour of planktivorous fish in artificial vegetation: the effects on swimming and... In the littoral zones of lakes, aquatic macrophytes produce considerable structural variation that can provide protection to prey communities by hindering predator foraging activity. The swimming and feeding behaviour of a planktivore, Pseudorasbora parva(Cyprinidae) on its prey (Daphnia pulex) was studied in a series of laboratory experiments with varying densities (0, 350, 700, 1400, 2100 and 2800 stems m−2) of simulated submerged vegetation. Prey availability was varied from 0.5, 1.0, 2.0, 5.0, 10.0 and 25.0 prey l−1. As the stem density increased, the predator's swimming speed and the number of prey captured decreased relative to feeding in open water. A good relation existed between the number of successful prey captures and swimming speed with the average stem distance to fish body length ratio (D). An abrupt reduction in feeding and swimming was recorded when D was reduced to values less than one. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Hydrobiologia Springer Journals

Foraging behaviour of planktivorous fish in artificial vegetation: the effects on swimming and feeding

Loading next page...
 
/lp/springer-journals/foraging-behaviour-of-planktivorous-fish-in-artificial-vegetation-the-5ZXUIuE9ZC
Publisher
Springer Journals
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Freshwater & Marine Ecology; Ecology; Zoology
ISSN
0018-8158
eISSN
1573-5117
D.O.I.
10.1023/A:1017578524578
Publisher site
See Article on Publisher Site

Abstract

In the littoral zones of lakes, aquatic macrophytes produce considerable structural variation that can provide protection to prey communities by hindering predator foraging activity. The swimming and feeding behaviour of a planktivore, Pseudorasbora parva(Cyprinidae) on its prey (Daphnia pulex) was studied in a series of laboratory experiments with varying densities (0, 350, 700, 1400, 2100 and 2800 stems m−2) of simulated submerged vegetation. Prey availability was varied from 0.5, 1.0, 2.0, 5.0, 10.0 and 25.0 prey l−1. As the stem density increased, the predator's swimming speed and the number of prey captured decreased relative to feeding in open water. A good relation existed between the number of successful prey captures and swimming speed with the average stem distance to fish body length ratio (D). An abrupt reduction in feeding and swimming was recorded when D was reduced to values less than one.

Journal

HydrobiologiaSpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off