“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

Fluctuations in nitrate reductase activity, and nitrate and organic nitrogen concentrations of succulent plants under different nitrogen and water regimes



The CAM ( Crassulacean acid metabolism ) succulent species Kalanchoe daigremontiana, K. tubiflora and Crassula argentea , and the succulent C 3 species Peperomia obtusifolia , were cultivated in pure culture in open-air conditions under two different regimes of nitrogen and water supply. At specified intervals during the course of vegetative growth, biomass, nitrate reductase activity (NRA), nitrate concentration, and organic nitrogen concentration of whole plants were measured. After 100 days of cultivation the leaf conductance of Crassula and Peperomia was measured at intervals for the duration of a day. Behaviour of all four species was strongly influenced by the cultivation regime. This was apparent in terms of productivity and variable flucturations in NRA, nitrate concentration, and organic nitrogen concentration during the vegetative period. Increase in biomass was mostly connected with a decrease in all other investigated parameters, especially under conditions of water and/or nitrogen deficiency. The typical reaction of the CAM species Crassula to limited netrogen but adequate soil water was to reduce leaf conductance during light, whereas the C 3 plant Peperomia increased conductance in comparison with plants having a nitrogen suppy. The NRA of all plant species was reduced by both soil nitrate deficiency and drought. The succulent plant species, which are specially adapted to drought, neither took up nor used nitrate when water was limited. This was particularly the case for the CAM species, but less so for the C 3 Peperomia , which showed very high concentrations of nitrate and organic nitrogen, but low NRA and biomass gain. A formula was derived to express the nitrogen use efficiency (NUE) of the species, i.e. the ability of a plant to use nitrogen over a specific period of growth. NUE was shown to increase with age for the crassulacean species but to decrease for the C 3 Peperomia . Furthermore, NUE varied with the different nutrient levels in a species-specific manner, with high values for NUE not necessarily coupled to high productivity, and with NUE of the C 3 species generally higher than that of CAM species.



OecologiaSpringer Journals

Published: May 1, 1993

DOI: 10.1007/BF00317316

Free Preview of First Page

Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually