Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Komaki, K. Okada, Eisho Shino, Yoshiro Shimura (1988)
Isolation and characterization of novel mutants of Arabidopsis thaliana defective in flower developmentDevelopment, 104
Heidi Szemenyei, M. Hannon, J. Long (2008)
TOPLESS Mediates Auxin-Dependent Transcriptional Repression During Arabidopsis EmbryogenesisScience, 319
J. Riechmann, Minqin Wang, E. Meyerowitz (1996)
DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS.Nucleic acids research, 24 16
K. Jofuku, B. Boer, M. Montagu, J. Okamuro (1994)
Control of Arabidopsis flower and seed development by the homeotic gene APETALA2.The Plant cell, 6 9
EA Schultz (1991)
1221Plant Cell, 3
K. Okada, J. Ueda, M. Komaki, C. Bell, Y. Shimura (1991)
Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation.The Plant cell, 3
J. Bowman, J. Alvarez, D. Weigel, E. Meyerowitz, D. Smyth (1993)
Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genesDevelopment, 119
M. Heisler, C. Ohno, P. Das, P. Sieber, G. Reddy, J. Long, E. Meyerowitz (2005)
Patterns of Auxin Transport and Gene Expression during Primordium Development Revealed by Live Imaging of the Arabidopsis Inflorescence MeristemCurrent Biology, 15
Bo Sun, Toshiro Ito (2010)
Floral stem cells: from dynamic balance towards termination.Biochemical Society transactions, 38 2
P. Sieber, F. Wellmer, J. Gheyselinck, J. Riechmann, E. Meyerowitz (2007)
Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness, 134
M. Egea-Cortines, H. Saedler, H. Sommer (1999)
Ternary complex formation between the MADS‐box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majusThe EMBO Journal, 18
Rae Yumul, Y. Kim, Xigang Liu, Ruozhong Wang, J. Ding, Langtao Xiao, Xuemei Chen (2013)
POWERDRESS and Diversified Expression of the MIR172 Gene Family Bolster the Floral Stem Cell NetworkPLoS Genetics, 9
R. Immink, I. Tonaco, S. Folter, A. Shchennikova, A. Dijk, Jacqueline Busscher-Lange, J. Borst, G. Angenent (2009)
SEPALLATA3: the 'glue' for MADS box transcription factor complex formationGenome Biology, 10
E. Jaber, K. Thiele, Viktoria Kindzierski, C. Loderer, Katarzyna Rybak, G. Jürgens, U. Mayer, Rosemarie Söllner, G. Wanner, F. Assaad (2010)
A putative TRAPPII tethering factor is required for cell plate assembly during cytokinesis in Arabidopsis.The New phytologist, 187 3
Xiaodong Liu, Jian Huang, Yao Wang, Kanhav Khanna, Zhixin Xie, H. Owen, Dazhong Zhao (2010)
The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression.The Plant journal : for cell and molecular biology, 62 3
Lijuan Ji, Xigang Liu, Jun Yan, Wenming Wang, Rae Yumul, Y. Kim, T. Dinh, Jun Liu, Xia Cui, Binglian Zheng, Manu Agarwal, Chunyan Liu, Xiaofeng Cao, G. Tang, Xuemei Chen (2011)
ARGONAUTE10 and ARGONAUTE1 Regulate the Termination of Floral Stem Cells through Two MicroRNAs in ArabidopsisPLoS Genetics, 7
Xuemei Chen, Jun Liu, Yulan Cheng, D. Jia (2002)
HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower.Development, 129 5
Yulan Cheng, Naohiro Kato, Wenming Wang, Junjie Li, Xuemei Chen (2003)
Two RNA binding proteins, HEN4 and HUA1, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana.Developmental cell, 4 1
Cara Winter, Ryan Austin, Servane Blanvillain-Baufumé, Maxwell Reback, M. Monniaux, Miin-Feng Wu, Y. Sang, A. Yamaguchi, Nobutoshi Yamaguchi, J. Parker, F. Parcy, S. Jensen, Hongzhe Li, D. Wagner (2011)
LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response.Developmental cell, 20 4
Heike Wollmann, E. Mica, M. Todesco, J. Long, D. Weigel (2010)
On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower developmentDevelopment, 137
K. Mayer, H. Schoof, Achim Haecker, Michael Lenhard, G. Jürgens, T. Laux (1998)
Role of WUSCHEL in Regulating Stem Cell Fate in the Arabidopsis Shoot MeristemCell, 95
D. Smyth, J. Bowman, E. Meyerowitz (1990)
Early flower development in Arabidopsis.The Plant cell, 2
Nathanaël Prunet, P. Morel, I. Negrutiu, C. Trehin (2009)
Time to Stop: Flower Meristem Termination1Plant Physiology, 150
M. Griffith, A. Conceição, D. Smyth (1999)
PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower.Development, 126 24
P. Das, Toshiro Ito, F. Wellmer, T. Vernoux, A. Dedieu, J. Traas, E. Meyerowitz (2009)
Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA, 136
H. Fan, Yi Hu, M. Tudor, Hong Ma (1997)
Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins.The Plant journal : for cell and molecular biology, 12 5
Ilha Lee, D. Wolfe, O. Nilsson, D. Weigel (1997)
A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANSCurrent Biology, 7
Steven Clark, M. Running, E. Meyerowitz (1995)
CLAVATA3 IS A SPECIFIC REGULATOR OF SHOOT AND FLORAL MERISTEM DEVELOPMENT AFFECTING THE SAME PROCESSES AS CLAVATA1Development, 121
S. Wuest, Diarmuid Ó’Maoiléidigh, Liina Rae, Kamila Kwaśniewska, A. Raganelli, Katarzyna Hanczaryk, A. Lohan, B. Loftus, E. Graciet, F. Wellmer (2012)
Molecular basis for the specification of floral organs by APETALA3 and PISTILLATAProceedings of the National Academy of Sciences, 109
JA Long (2002)
2797Development, 129
J. Lohmann, Ray Hong, M. Hobe, M. Busch, F. Parcy, R. Simon, D. Weigel (2001)
A Molecular Link between Stem Cell Regulation and Floral Patterning in ArabidopsisCell, 105
K. Hiratsu, Masaru Ohta, Kyoko Matsui, M. Ohme-Takagi (2002)
The SUPERMAN protein is an active repressor whose carboxy‐terminal repression domain is required for the development of normal flowersFEBS Letters, 514
L. Sieburth, M. Running, E. Meyerowitz (1995)
Genetic separation of third and fourth whorl functions of AGAMOUS.The Plant cell, 7
I. Furner, J. Pumfrey (1993)
Cell fate in the inflorescence meristem and floral buttress of Arabidopsis thalianaPlant Journal, 4
JM Kayes (1998)
3843Development, 125
H. Sakai, B. Krizek, S. Jacobsen, E. Meyerowitz (2000)
Regulation of SUP Expression Identifies Multiple Regulators Involved in Arabidopsis Floral Meristem DevelopmentPlant Cell, 12
T. Jack, L. Sieburth, E. Meyerowitz (1997)
Targeted misexpression of AGAMOUS in whorl 2 of Arabidopsis flowers.The Plant journal : for cell and molecular biology, 11 4
Michael Smith, M. Willmann, Gang Wu, T. Berardini, Barbara Möller, D. Weijers, R. Poethig (2009)
Cyclophilin 40 is required for microRNA activity in ArabidopsisProceedings of the National Academy of Sciences, 106
Wonkeun Park, Junjie Li, R. Song, J. Messing, Xuemei Chen (2002)
CARPEL FACTORY, a Dicer Homolog, and HEN1, a Novel Protein, Act in microRNA Metabolism in Arabidopsis thalianaCurrent Biology, 12
K. Bomblies, Nicole Dagenais, D. Weigel (1999)
Redundant enhancers mediate transcriptional repression of AGAMOUS by APETALA2.Developmental biology, 216 1
Y. Mizukami, Hong Ma (1992)
Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identityCell, 71
Youfa Cheng, Xinhua Dai, Yunde Zhao (2006)
Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis.Genes & development, 20 13
U. Brand, J. Fletcher, M. Hobe, E. Meyerowitz, R. Simon (2000)
Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity.Science, 289 5479
J. Riechmann, E. Meyerowitz (1998)
The AP2/EREBP family of plant transcription factors.Biological chemistry, 379 6
L. Williams, Stephen Grigg, M. Xie, Sioux Christensen, J. Fletcher (2005)
Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes, 132
S. Pelaz, G. Ditta, Elvira Baumann, E. Wisman, M. Yanofsky (2000)
B and C floral organ identity functions require SEPALLATA MADS-box genesNature, 405
MK Komaki (1988)
195Development, 104
T. Dinh, T. Girke, Xigang Liu, Levi Yant, M. Schmid, Xuemei Chen (2012)
The floral homeotic protein APETALA2 recognizes and acts through an AT-rich sequence elementDevelopment, 139
M. Aida, M. Tasaka (2006)
Morphogenesis and Patterning at the Organ Boundaries in the Higher Plant Shoot ApexPlant Molecular Biology, 60
J. Riechmann, B. Krizek, E. Meyerowitz (1996)
Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS.Proceedings of the National Academy of Sciences of the United States of America, 93 10
P. Laufs, A. Peaucelle, H. Morin, J. Traas (2004)
MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems, 131
Maria Cartolano, Rosa Castillo, N. Efremova, M. Kuckenberg, J. Zethof, T. Gerats, Z. Schwarz‐Sommer, M. Vandenbussche (2007)
A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identityNature Genetics, 39
Stéphanie Breuil-Broyer, P. Morel, J. Almeida-Engler, V. Coustham, I. Negrutiu, C. Trehin (2004)
High-resolution boundary analysis during Arabidopsis thaliana flower development.The Plant journal : for cell and molecular biology, 38 1
J. Hill, E. Lord (1989)
Floral development in Arabidopsis thaliana: a comparison of the wild type and the homeotic pistillata mutantBotany, 67
A. Schlereth, Barbara Möller, Weilin Liu, M. Kientz, Jacky Flipse, E. Rademacher, M. Schmid, G. Jürgens, D. Weijers (2010)
MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factorNature, 464
T. Honma, K. Goto (2001)
Complexes of MADS-box proteins are sufficient to convert leaves into floral organsNature, 409
Wolfgang Busch, Andrej Miotk, F. Ariel, Zhong Zhao, Joachim Forner, Gabor Daum, Takuya Suzaki, C. Schuster, Sebastian Schultheiss, Andrea Leibfried, Silke Haubeiss, Nati Ha, R. Chan, J. Lohmann (2010)
Transcriptional control of a plant stem cell niche.Developmental cell, 18 5
M. Mandel, J. Bowman, S. Kempin, Hong Ma, E. Meyerowitz, M. Yanofsky (1992)
Manipulation of flower structure in transgenic tobaccoCell, 71
M. Koornneef, J. Vaneden, Cj Hanhart, P. Stam, F. Braaksma, W. Feenstra (1983)
Linkage map of Arabidopsis thalianaJournal of Heredity, 74
S. Jacobsen, M. Running, E. Meyerowitz (1999)
Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems.Development, 126 23
Tengbo Huang, F. López-Giráldez, J. Townsend, V. Irish (2012)
RBE controls microRNA164 expression to effect floral organogenesisDevelopment, 139
Catherine Baker, P. Sieber, F. Wellmer, E. Meyerowitz (2005)
The early extra petals1 Mutant Uncovers a Role for MicroRNA miR164c in Regulating Petal Number in ArabidopsisCurrent Biology, 15
C. Chuang, E. Meyerowitz (2000)
Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana.Proceedings of the National Academy of Sciences of the United States of America, 97 9
M. Wilkinson, G. Haughn (1995)
UNUSUAL FLORAL ORGANS Controls Meristem Identity and Organ Primordia Fate in Arabidopsis.The Plant cell, 7
M. Koornneef, J. Veen (1980)
Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) heynh.Theoretical and Applied Genetics, 58
V. Irish, I. Sussex (1990)
Function of the apetala-1 gene during Arabidopsis floral development.The Plant cell, 2
Cristel Carles, J. Fletcher (2009)
The SAND domain protein ULTRAPETALA1 acts as a trithorax group factor to regulate cell fate in plants.Genes & development, 23 23
JL Riechmann (1997)
1079Biol Chem, 378
M. Aukerman, H. Sakai (2003)
Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.016238.The Plant Cell Online, 15
M. Deyholos, L. Sieburth (2000)
Separable Whorl-Specific Expression and Negative Regulation by Enhancer Elements within the AGAMOUS Second IntronPlant Cell, 12
D. Reinhardt, Therese Mandel, C. Kuhlemeier (2000)
Auxin Regulates the Initiation and Radial Position of Plant Lateral OrgansPlant Cell, 12
M. Mandel, C. Gustafson-Brown, Beth Savidge, M. Yanofsky (1992)
Molecular characterization of the Arabidopsis floral homeotic gene APETALA1Nature, 360
Víctor Zúñiga-Mayo, Nayelli Marsch-Martínez, S. Folter (2012)
JAIBA, a class-II HD-ZIP transcription factor involved in the regulation of meristematic activity, and important for correct gynoecium and fruit development in Arabidopsis.The Plant journal : for cell and molecular biology, 71 2
G. Bossinger, D. Smyth (1996)
Initiation patterns of flower and floral organ development in Arabidopsis thaliana.Development, 122 4
ME Griffith (1999)
5635Development, 126
SE Clark (1995)
2057Development, 121
D. Reinhardt, E. Pesce, P. Stieger, Therese Mandel, K. Baltensperger, M. Bennett, J. Traas, J. Friml, C. Kuhlemeier (2003)
Regulation of phyllotaxis by polar auxin transportNature, 426
E. Coen, E. Meyerowitz (1991)
The war of the whorls: genetic interactions controlling flower developmentNature, 353
M. Yanofsky, Hong Ma, J. Bowman, G. Drews, K. Feldmann, E. Meyerowitz (1990)
The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factorsNature, 346
Li Zhao, YunJu Kim, T. Dinh, Xuemei Chen (2007)
miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems.The Plant journal : for cell and molecular biology, 51 5
M. Prigge, Denichiro Otsuga, J. Alonso, J. Ecker, G. Drews, S. Clark (2005)
Class III Homeodomain-Leucine Zipper Gene Family Members Have Overlapping, Antagonistic, and Distinct Roles in Arabidopsis Developmentw⃞The Plant Cell Online, 17
Iris Ottenschläger, Patricia Wolff, C. Wolverton, R. Bhalerao, G. Sandberg, H. Ishikawa, M. Evans, K. Palme (2003)
Gravity-regulated differential auxin transport from columella to lateral root cap cellsProceedings of the National Academy of Sciences of the United States of America, 100
G. Drews, J. Bowman, E. Meyerowitz (1991)
Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 productCell, 65
Zhongchi Liu, E. Meyerowitz (1995)
LEUNIG regulates AGAMOUS expression in Arabidopsis flowers.Development, 121 4
Rainer Melzer, Wim Verelst, G. Theißen (2008)
The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitroNucleic Acids Research, 37
J. Long, C. Ohno, Z. Smith, E. Meyerowitz (2006)
TOPLESS Regulates Apical Embryonic Fate in ArabidopsisScience, 312
MD Wilkinson (1995)
1485Plant Cell, 7
J. Chandler, Bianca Jacobs, Melanie Cole, Petra Comelli, W. Werr (2011)
DORNRÖSCHEN-LIKE expression marks Arabidopsis floral organ founder cells and precedes auxin response maximaPlant Molecular Biology, 76
B. Krizek, M. Lewis, J. Fletcher (2006)
RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers.The Plant journal : for cell and molecular biology, 45 3
E. Lampugnani, Aydin Kilinc, D. Smyth (2013)
Auxin controls petal initiation in ArabidopsisDevelopment, 140
E. Chae, Q. Tan, T. Hill, V. Irish (2008)
An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development, 135
Jae-Young Yun, D. Weigel, Ilha Lee (2002)
Ectopic expression of SUPERMAN suppresses development of petals and stamens.Plant & cell physiology, 43 1
M. Aida, D. Beis, R. Heidstra, V. Willemsen, Ikram Blilou, Carla Galinha, L. Nussaume, Y. Noh, R. Amasino, B. Scheres (2004)
The PLETHORA Genes Mediate Patterning of the Arabidopsis Root Stem Cell NicheCell, 119
K Okada (1991)
677Plant Cell, 3
Z Liu (1995)
975Development, 121
R. Schwab, J. Palatnik, Markus Riester, C. Schommer, M. Schmid, D. Weigel (2005)
Specific effects of microRNAs on the plant transcriptome.Developmental cell, 8 4
C. Gómez-Mena, S. Folter, M. Costa, G. Angenent, R. Sablowski (2005)
Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis, 132
John Alvarez, David Smyth (1999)
CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS.Development, 126 11
K. Kaufmann, J. Muiño, R. Jáuregui, C. Airoldi, C. Smaczniak, P. Krajewski, G. Angenent (2009)
Target Genes of the MADS Transcription Factor SEPALLATA3: Integration of Developmental and Hormonal Pathways in the Arabidopsis FlowerPLoS Biology, 7
Toshiro Ito, K. Ng, T. Lim, Hao Yu, E. Meyerowitz (2007)
The Homeotic Protein AGAMOUS Controls Late Stamen Development by Regulating a Jasmonate Biosynthetic Gene in Arabidopsis[W]The Plant Cell Online, 19
J. Long, S. Woody, S. Poethig, E. Meyerowitz, M. Barton (2002)
Transformation of shoots into roots in Arabidopsis embryos mutant at the TOPLESS locus.Development, 129 12
J. Bowman, D. Smyth (1999)
CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains.Development, 126 11
Xigang Liu, Y. Kim, Ralf Müller, Rae Yumul, Chunyan Liu, Yanyun Pan, Xiaofeng Cao, J. Goodrich, Xuemei Chen (2011)
AGAMOUS Terminates Floral Stem Cell Maintenance in Arabidopsis by Directly Repressing WUSCHEL through Recruitment of Polycomb Group Proteins[W]Plant Cell, 23
A. Stepanova, J. Robertson-Hoyt, Jeonga Yun, Larissa Benavente, D. Xie, K. Doležal, A. Schlereth, G. Jürgens, J. Alonso (2008)
TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant DevelopmentCell, 133
G. Theißen, H. Saedler (2001)
Plant biology: Floral quartetsNature, 409
Leslie Sieburth, G. Drews, E. Meyerowitz (1998)
Non-autonomy of AGAMOUS function in flower development: use of a Cre/loxP method for mosaic analysis in Arabidopsis.Development, 125 21
B. Causier, M. Ashworth, Wenjia Guo, B. Davies (2011)
The TOPLESS Interactome: A Framework for Gene Repression in Arabidopsis1[W][OA]Plant Physiology, 158
C. Smaczniak, R. Immink, J. Muiño, R. Blanvillain, M. Busscher, Jacqueline Busscher-Lange, Q. Dinh, Shujing Liu, A. Westphal, S. Boeren, F. Parcy, Lin Xu, Cristel Carles, G. Angenent, K. Kaufmann (2012)
Characterization of MADS-domain transcription factor complexes in Arabidopsis flower developmentProceedings of the National Academy of Sciences, 109
J. Levin, E. Meyerowitz (1995)
UFO: an Arabidopsis gene involved in both floral meristem and floral organ development.The Plant cell, 7
Chang Liu, Hongyan Chen, H. Er, H. Soo, Prakash Kumar, Jin-Hua Han, Y. Liou, Hao Yu (2008)
Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis, 135
C. Chen, C. Cepko (2002)
The chicken RaxL gene plays a role in the initiation of photoreceptor differentiation, 129
G. Ditta, A. Pinyopich, P. Robles, S. Pelaz, M. Yanofsky (2004)
The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem IdentityCurrent Biology, 14
T. Jack, G. Fox, E. Meyerowitz (1994)
Arabidopsis homeotic gene APETALA3 ectopic expression: Transcriptional and posttranscriptional regulation determine floral organ identityCell, 76
M. Aida, T. Ishida, H. Fukaki, Hisao Fujisawa, M. Tasaka (1997)
Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant.The Plant cell, 9
J Alvarez (1999)
2356Development, 126
Ryo Tabata, Masaya Ikezaki, Takahiro Fujibe, M. Aida, C. Tian, Y. Ueno, Kotaro Yamamoto, Y. Machida, K. Nakamura, S. Ishiguro (2010)
Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes.Plant & cell physiology, 51 1
JL Bowman (1991)
1Development, 112
W. Crone, E. Lord (1994)
Floral organ initiation and development in wild-type Arabidopsis thaliana (Brassicaceae) and in the organ identity mutants apetala2-1 and agamous-1Botany, 72
J. Bowman, H. Sakai, T. Jack, D. Weigel, U. Mayer, E. Meyerowitz (1992)
SUPERMAN, a regulator of floral homeotic genes in Arabidopsis.Development, 114 3
Annette Maier, Sandra Stehling-Sun, Heike Wollmann, Monika Demar, Ray Hong, Silke Haubeiss, D. Weigel, J. Lohmann (2009)
Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression, 136
S. Takeda, N. Matsumoto, K. Okada (2003)
RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana, 131
J. Riechmann, E. Meyerowitz (1997)
MADS domain proteins in plant development.Biological chemistry, 378 10
SE Clark (1993)
397Development, 119
Jae-Hoon Jung, Yeon-Hee Seo, P. Seo, J. Reyes, J. Yun, N. Chua, Chung-Mo Park (2007)
The GIGANTEA-Regulated MicroRNA172 Mediates Photoperiodic Flowering Independent of CONSTANS in Arabidopsis[W][OA]The Plant Cell Online, 19
PD Jenik (2000)
1267Development, 127
Goto Koji, Junko Kyozuka, John Bowman (2001)
Turning floral organs into leaves, leaves into floral organs.Current opinion in genetics & development, 11 4
N. Krogan, K. Hogan, J. Long (2012)
APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19Development, 139
Philip Brewer, P. Howles, K. Dorian, M. Griffith, T. Ishida, R. Kaplan-Levy, Aydin Kilinc, D. Smyth (2004)
PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower, 131
S. Pelaz, R. Tapia-López, E. Álvarez-Buylla, M. Yanofsky (2001)
Conversion of leaves into petals in ArabidopsisCurrent Biology, 11
G. Theißen (2001)
Development of floral organ identity: stories from the MADS house.Current opinion in plant biology, 4 1
Y. Mizukami, Hong Ma (1995)
Separation of AG function in floral meristem determinacy from that in reproductive organ identity by expressing antisense AG RNAPlant Molecular Biology, 28
Yuanxiang Zhao, L. Medrano, K. Ohashi, J. Fletcher, Hao Yu, H. Sakai, E. Meyerowitz (2004)
HANABA TARANU Is a GATA Transcription Factor That Regulates Shoot Apical Meristem and Flower Development in Arabidopsisw⃞The Plant Cell Online, 16
J. Bowman, D. Smyth, E. Meyerowitz (1989)
Genes directing flower development in Arabidopsis.The Plant cell, 1
P. Jenik, V. Irish (2000)
Regulation of cell proliferation patterns by homeotic genes during Arabidopsis floral development.Development, 127 6
R. Sablowski, E. Meyerowitz (1998)
A Homolog of NO APICAL MERISTEM Is an Immediate Target of the Floral Homeotic Genes APETALA3/PISTILLATACell, 92
K. Goto, E. Meyerowitz (1994)
Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA.Genes & development, 8 13
Levi Yant, J. Mathieu, T. Dinh, Felix Ott, C. Lanz, Heike Wollmann, Xuemei Chen, M. Schmid (2010)
Orchestration of the Floral Transition and Floral Development in Arabidopsis by the Bifunctional Transcription Factor APETALA2[W][OA]Plant Cell, 22
Bo Sun, Yifeng Xu, K. Ng, Toshiro Ito (2009)
A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem.Genes & development, 23 15
J. Goodrich, P. Puangsomlee, Marta Martín, D. Long, E. Meyerowitz, G. Coupland (1997)
A Polycomb-group gene regulates homeotic gene expression in ArabidopsisNature, 386
P. Nagpal, Christine Ellis, H. Weber, S. Ploense, L. Barkawi, T. Guilfoyle, G. Hagen, J. Alonso, J. Cohen, E. Farmer, J. Ecker, J. Reed (2005)
Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation, 132
J. Fletcher (2001)
The ULTRAPETALA gene controls shoot and floral meristem size in Arabidopsis.Development, 128 8
BA Krizek (1996)
11Development, 122
T. Jack, L. Brockman, E. Meyerowitz (1992)
The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamensCell, 68
John Bowman, David Smyth, E. Meyerowitz (1991)
Genetic interactions among floral homeotic genes of Arabidopsis.Development, 112 1
T. Payne, Susan Johnson, A. Koltunow (2004)
KNUCKLES (KNU) encodes a C2H2 zinc-finger protein that regulates development of basal pattern elements of the Arabidopsis gynoecium, 131
B. Krizek, E. Meyerowitz (1996)
The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function.Development, 122 1
E. Lampugnani, Aydin Kilinc, D. Smyth (2012)
PETAL LOSS is a boundary gene that inhibits growth between developing sepals in Arabidopsis thaliana.The Plant journal : for cell and molecular biology, 71 5
Allison Mallory, Diana Dugas, D. Bartel, B. Bartel (2004)
MicroRNA Regulation of NAC-Domain Targets Is Required for Proper Formation and Separation of Adjacent Embryonic, Vegetative, and Floral OrgansCurrent Biology, 14
SE Jacobsen (1999)
5231Development, 126
T. Würschum, R. Groß-Hardt, T. Laux (2005)
APETALA2 Regulates the Stem Cell Niche in the Arabidopsis Shoot Meristem[W]The Plant Cell Online, 18
Xuemei Chen (2004)
A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower DevelopmentScience, 303
J. Chandler (2011)
Founder cell specification.Trends in plant science, 16 11
Nathanaël Prunet, P. Morel, Anne-Marie Thierry, Y. Eshed, J. Bowman, I. Negrutiu, C. Trehin (2008)
REBELOTE, SQUINT, and ULTRAPETALA1 Function Redundantly in the Temporal Regulation of Floral Meristem Termination in Arabidopsis thaliana[W]The Plant Cell Online, 20
S. Clark, M. Running, E. Meyerowitz (1993)
CLAVATA1, a regulator of meristem and flower development in Arabidopsis.Development, 119 2
Clayton Larue, J. Wen, John Walker (2009)
A microRNA-transcription factor module regulates lateral organ size and patterning in Arabidopsis.The Plant journal : for cell and molecular biology, 58 3
Toshiro Ito, F. Wellmer, Hao Yu, P. Das, Natsuko Ito, M. Alves-Ferreira, J. Riechmann, E. Meyerowitz (2004)
The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESSNature, 430
C. Vroemen, A. Mordhorst, C. Albrecht, Mark Kwaaitaal, S. Vries (2003)
The CUP-SHAPED COTYLEDON3 Gene Is Required for Boundary and Shoot Meristem Formation in Arabidopsis Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.012203.The Plant Cell Online, 15
Rainer Melzer, G. Theißen (2009)
Reconstitution of ‘floral quartets’ in vitro involving class B and class E floral homeotic proteinsNucleic Acids Research, 37
G Bossinger (1996)
1093Development, 122
Karen Bohmert, Isabelle Camus, C. Bellini, D. Bouchez, M. Caboche, C. Benning (1998)
AGO1 defines a novel locus of Arabidopsis controlling leaf developmentThe EMBO Journal, 17
K. Kaufmann, F. Wellmer, J. Muiño, Thilia Ferrier, S. Wuest, Vijaya Kumar, Antonio Serrano-Mislata, F. Madueño, P. Krajewski, E. Meyerowitz, G. Angenent, J. Riechmann (2010)
Orchestration of Floral Initiation by APETALA1Science, 328
JL Bowman (1992)
599Development, 114
H. Sakai, L. Medrano, E. Meyerowitz (1995)
Role of SUPERMAN in maintaining Arabidopsis floral whorl boundariesNature, 378
Z. Smith, J. Long (2010)
Control of Arabidopsis apical-basal embryo polarity by antagonistic transcription factorsNature, 464
Michael Lenhard, Andrea Bohnert, G. Jürgens, T. Laux (2001)
Termination of Stem Cell Maintenance in Arabidopsis Floral Meristems by Interactions between WUSCHEL and AGAMOUSCell, 105
Cristina Castillejo, Maida Romera-Branchat, S. Pelaz (2005)
A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression.The Plant journal : for cell and molecular biology, 43 4
Anwesha Nag, Yingzhen Yang, T. Jack (2007)
DORNRÖSCHEN-LIKE, an AP2 gene, is necessary for stamen emergence in ArabidopsisPlant Molecular Biology, 65
E. Schultz, F. Pickett, G. Haughn (1991)
The FLO10 Gene Product Regulates the Expression Domain of Homeotic Genes AP3 and PI in Arabidopsis Flowers.The Plant cell, 3
[The field of Arabidopsis flower development began in the early 1980s with the initial description of several mutants including apetala1, apetala2, and agamous that altered floral organ identity (Koornneef and van der Veen, Theor Appl Genet 58:257–263, 1980; Koornneef et al., J Hered 74:265–272, 1983). By the end of the 1980s, these mutants were receiving more focused attention to determine precisely how they affected flower development (Komaki et al., Development 104:195–203, 1988; Bowman et al., Plant Cell 1:37–52, 1989). In the last quarter century, impressive progress has been made in characterizing the gene products and molecular mechanisms that control the key events in flower development. In this review, we briefly summarize the highlights of work from the past 25 years but focus on advances in the field in the last several years.]
Published: Dec 2, 2013
Keywords: Flower development; Arabidopsis; Meristem; Transcription factor; Transcriptional network; Floral determinacy; Boundary; Founder cells; Homeotic genes
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.