Access the full text.
Sign up today, get DeepDyve free for 14 days.
Results of an experimental hydrodynamic and heat-transfer study of the turbulent separated flow developing over a system of several cross-flow ribs are reported. Conditions with low and high free-stream turbulence are considered. Visualization and heat-transfer data are presented, and a comparison for two turbulence levels is given. In the system of three or more ribs, a very unstable flow in the second inter-rib cell was observed under low-turbulence conditions. Under a high level of free-stream turbulence, the flow in the first inter-rib cell is unstable; this observation is supported by measured pressure distributions. Addition of each next rib makes the separation flow region behind the last rib and the pressure recovery region less extended, and decreases the coordinate at which the rate of heat transfer attains its maximum. In the high-turbulent flow, the heat-transfer intensification in the second inter-rib cell amounts to 30 %.
Thermophysics and Aeromechanics – Springer Journals
Published: Sep 1, 2006
Keywords: Heat Transfer; Pressure Coefficient; Separate Flow; Turbulence Level; Intensify Heat Transfer
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.