Fire and soil-plant nutrient relations in a pine-wiregrass savanna on the coastal plain of North Carolina

Fire and soil-plant nutrient relations in a pine-wiregrass savanna on the coastal plain of North... Changes in soil and plant nutrient conditions were evaluated following various burn and clip treatments in a longleaf pine-wiregrass savanna in Bladen Co., N.C., USA. Ground fires were found to add substantial quantities of N, P, K, Ca, and Mg to the soil, though not necessarily in forms immediately available to plants. Less than 1% of the total nitrogen in the charred residue (ash) is present as nitrate or ammonium. Considerable quantities of all nutrients examined were lost to the atmosphere during burning. Green leaf tissue in recently burned areas was consistently higher in N, P, K, Ca, and Mg compared to unburned areas. Howerver, when compared to similar tissues from clipped plots, burned area tissues were significantly higher in N, Ca, and Mg only. Data presented here suggest that tissue age significantly affects nutrient content and must be considered in any analysis of tissue nutrient content following burning. Within 4–6 months following fire, burned-area tissue nutrient content decreases to concentrations found in the unburned area. Burning resulted in initial enrichment of available soil nutrients including PO 4 , K + , Ca ++ , and Mg ++ , however, NO 3 - , and NH 4 + concentrations in burned soil were not significantly different from unbruned soil. Soil and plant nutrient changes in an area burned two years in succession indicate that repeated burning may diminish nutrient availability. Plant response to various nutrient enrichment treatments of the soil indicated that nitrogen is limiting growth in both burned and unburned soils and that burning may alter some factors other than nutrients which may retard plant growth in unburned areas. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Oecologia Springer Journals

Fire and soil-plant nutrient relations in a pine-wiregrass savanna on the coastal plain of North Carolina

Oecologia, Volume 31 (1) – Jan 1, 1977

Loading next page...
 
/lp/springer-journals/fire-and-soil-plant-nutrient-relations-in-a-pine-wiregrass-savanna-on-3P6g6H8mrg
Publisher
Springer Journals
Copyright
Copyright © 1977 by Springer-Verlag
Subject
Life Sciences; Ecology; Plant Sciences
ISSN
0029-8549
eISSN
1432-1939
DOI
10.1007/BF00348706
Publisher site
See Article on Publisher Site

Abstract

Changes in soil and plant nutrient conditions were evaluated following various burn and clip treatments in a longleaf pine-wiregrass savanna in Bladen Co., N.C., USA. Ground fires were found to add substantial quantities of N, P, K, Ca, and Mg to the soil, though not necessarily in forms immediately available to plants. Less than 1% of the total nitrogen in the charred residue (ash) is present as nitrate or ammonium. Considerable quantities of all nutrients examined were lost to the atmosphere during burning. Green leaf tissue in recently burned areas was consistently higher in N, P, K, Ca, and Mg compared to unburned areas. Howerver, when compared to similar tissues from clipped plots, burned area tissues were significantly higher in N, Ca, and Mg only. Data presented here suggest that tissue age significantly affects nutrient content and must be considered in any analysis of tissue nutrient content following burning. Within 4–6 months following fire, burned-area tissue nutrient content decreases to concentrations found in the unburned area. Burning resulted in initial enrichment of available soil nutrients including PO 4 , K + , Ca ++ , and Mg ++ , however, NO 3 - , and NH 4 + concentrations in burned soil were not significantly different from unbruned soil. Soil and plant nutrient changes in an area burned two years in succession indicate that repeated burning may diminish nutrient availability. Plant response to various nutrient enrichment treatments of the soil indicated that nitrogen is limiting growth in both burned and unburned soils and that burning may alter some factors other than nutrients which may retard plant growth in unburned areas.

Journal

OecologiaSpringer Journals

Published: Jan 1, 1977

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off