Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Feasible and effective IT asset management using surface acoustic wave-based RFID

Feasible and effective IT asset management using surface acoustic wave-based RFID A radio-frequency identification (RFID) system has been considered as one of the most promising systems for information technology (IT) asset management because of its well-developed level of technology, worldwide standards and its lower price than other wireless protocols such as WiFi, WiMAX, and Bluetooth. However, RFID systems for IT asset management in business-to-business (B2B) environments are still limited by several constraints such as readable range, sensor capability, and battery problems inherent in existing RFID technologies. In particular, only few research works deal with asset management in a real office environment. This paper proposes a new way of managing IT assets using surface acoustic wave (SAW)-based RFID technology to solve these problems. To show its effectiveness and feasibility, the proposed approach analyzes RFID tag performance based on an electromagnetic test and measures the readability of SAW-based RFID in an office environment. Experimental results show that one of the most hopeful candidates for managing B2B IT assets is the SAW-based RFID system because of its batteryless passive RFID characteristic, relatively long readable range, its potential and inherent sensor capability, and its expandability compared to other RFID systems. Furthermore, the proposed approach systematically analyzes where to attach RFID tags on IT asset devices considering electromagnetic performance based on ID- and sensor-detecting capabilities, which suggests the most appropriate tag position on the device. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Feasible and effective IT asset management using surface acoustic wave-based RFID

Loading next page...
 
/lp/springer-journals/feasible-and-effective-it-asset-management-using-surface-acoustic-wave-9DY8F6PvpU

References (33)

Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer-Verlag London Limited
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
DOI
10.1007/s00170-010-3119-z
Publisher site
See Article on Publisher Site

Abstract

A radio-frequency identification (RFID) system has been considered as one of the most promising systems for information technology (IT) asset management because of its well-developed level of technology, worldwide standards and its lower price than other wireless protocols such as WiFi, WiMAX, and Bluetooth. However, RFID systems for IT asset management in business-to-business (B2B) environments are still limited by several constraints such as readable range, sensor capability, and battery problems inherent in existing RFID technologies. In particular, only few research works deal with asset management in a real office environment. This paper proposes a new way of managing IT assets using surface acoustic wave (SAW)-based RFID technology to solve these problems. To show its effectiveness and feasibility, the proposed approach analyzes RFID tag performance based on an electromagnetic test and measures the readability of SAW-based RFID in an office environment. Experimental results show that one of the most hopeful candidates for managing B2B IT assets is the SAW-based RFID system because of its batteryless passive RFID characteristic, relatively long readable range, its potential and inherent sensor capability, and its expandability compared to other RFID systems. Furthermore, the proposed approach systematically analyzes where to attach RFID tags on IT asset devices considering electromagnetic performance based on ID- and sensor-detecting capabilities, which suggests the most appropriate tag position on the device.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Jan 8, 2011

There are no references for this article.