Expression and high-level secretion of Trichoderma reesei endoglucanase I in Yarrowia lipolytica

Expression and high-level secretion of Trichoderma reesei endoglucanase I in Yarrowia lipolytica The endoglucanase I (EGI) from fungus Trichoderma reesei was cloned, expressed, and secreted from Yarrowia lipolytica using the XPR2 promoter. The signal sequence of EGI transferred from T. reesei was efficiently processed in the Y. lipolytica secretory pathway and directed the secretion of active EGI into the culture medium. However, the recombinant EGI produced from YLCSIn strain was hyperglycosylated and significantly larger than the native enzyme produced by the parent strain. The expression of EGI using XPR2 preproregion has caused secretion of modified proteins that still retained cellulase activity. This resulted from imprecise processing of the N-terminus of recombinant protein. While the batch culture produced 5 mg EGI/L from YLCSIn strain, the EGI yield was increased approx 20-fold when the fed-batch fermentation process strategy in combination with the high-cell density cultivation technique was employed. These results showed that the Y. lipolytica is a useful host organism for production of a large amount of large size heterologous proteins, especially when used in combination with high-cell density and fed-batch culture techniques. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Biochemistry and Biotechnology Springer Journals

Expression and high-level secretion of Trichoderma reesei endoglucanase I in Yarrowia lipolytica

Loading next page...
 
/lp/springer-journals/expression-and-high-level-secretion-of-trichoderma-reesei-sO4LN0GeX6
Publisher
Springer Journals
Copyright
Copyright © 2000 by Humana Press Inc.
Subject
Chemistry; Biotechnology; Biochemistry, general
ISSN
0273-2289
eISSN
1559-0291
DOI
10.1385/ABAB:87:1:1
Publisher site
See Article on Publisher Site

Abstract

The endoglucanase I (EGI) from fungus Trichoderma reesei was cloned, expressed, and secreted from Yarrowia lipolytica using the XPR2 promoter. The signal sequence of EGI transferred from T. reesei was efficiently processed in the Y. lipolytica secretory pathway and directed the secretion of active EGI into the culture medium. However, the recombinant EGI produced from YLCSIn strain was hyperglycosylated and significantly larger than the native enzyme produced by the parent strain. The expression of EGI using XPR2 preproregion has caused secretion of modified proteins that still retained cellulase activity. This resulted from imprecise processing of the N-terminus of recombinant protein. While the batch culture produced 5 mg EGI/L from YLCSIn strain, the EGI yield was increased approx 20-fold when the fed-batch fermentation process strategy in combination with the high-cell density cultivation technique was employed. These results showed that the Y. lipolytica is a useful host organism for production of a large amount of large size heterologous proteins, especially when used in combination with high-cell density and fed-batch culture techniques.

Journal

Applied Biochemistry and BiotechnologySpringer Journals

Published: Apr 12, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off