Exploring the Relationship Between Hydrologic Parameters and Nutrient Loads Using Digital Elevation Model and GIS – A Case Study from Sugarcreek Headwaters, Ohio, U.S.A.

Exploring the Relationship Between Hydrologic Parameters and Nutrient Loads Using Digital... Ohio is typical among the Midwestern and Eastern United States with high levels of water pollutants, the main sources being from agriculture. In this study, we used a digital elevation model in conjunction with hydrological indices to determine the role of landscape complexity affecting the spatial and temporal variation in pollutant levels, in one of the most impaired headwater streams in Ohio. More than eighty five percent of the study area is dominated by agriculture. Spatial distribution of slope (S), altitude and wetness index along with other watershed parameters such as flow direction, flow accumulation, stream networks, flow stream orders and erosion index were used within a Geographic Information Systems framework to quantify variation in nitrate and phosphate loads to headwater streams. Stream monitoring data for nutrient loads were used to correlate the observed spatial and temporal patterns with hydrological parameters using multiple linear regressions. Results from the wetness index calculated from a digital elevation model suggested a range of 0.10–16.39, with more than 35% having values less than 4.0. A Revised Universal Soil Loss Equation (RUSLE) predicted soil loss in the range of 0.01–4.0 t/ha/yr. Nitrate nitrogen levels in the study area paralleled precipitation patterns over time, with higher nitrate levels corresponding to high precipitation. Atmospheric deposition through precipitation could explain approximately 35% of total nitrate levels observed in streams. Among the different topographic variables and hydrological indices, results from the step-wise multiple regression suggested the following best predictors, (1) elevation range and upstream flow length for nitrate, (2) flow direction and upstream flow length for ammonia-nitrogen and slope, and (3) elevation range for phosphate levels. Differences in the landscape models observed for nitrate, phosphate and ammonia-nitrogen in the surface waters were attributed partly to differences in the chemical activity and source strengths of the different forms of these nutrients through agricultural management practices. The results identify geomorphologic and landscape characteristics that influence pollutant levels in the study area. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Monitoring and Assessment Springer Journals

Exploring the Relationship Between Hydrologic Parameters and Nutrient Loads Using Digital Elevation Model and GIS – A Case Study from Sugarcreek Headwaters, Ohio, U.S.A.

Loading next page...
 
/lp/springer-journals/exploring-the-relationship-between-hydrologic-parameters-and-nutrient-x99vYGCMuv
Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer Science + Business Media, Inc.
Subject
Environment; Monitoring/Environmental Analysis; Environmental Management; Ecotoxicology; Atmospheric Protection/Air Quality Control/Air Pollution; Ecology
ISSN
0167-6369
eISSN
1573-2959
DOI
10.1007/s10661-005-6688-9
pmid
16308784
Publisher site
See Article on Publisher Site

Abstract

Ohio is typical among the Midwestern and Eastern United States with high levels of water pollutants, the main sources being from agriculture. In this study, we used a digital elevation model in conjunction with hydrological indices to determine the role of landscape complexity affecting the spatial and temporal variation in pollutant levels, in one of the most impaired headwater streams in Ohio. More than eighty five percent of the study area is dominated by agriculture. Spatial distribution of slope (S), altitude and wetness index along with other watershed parameters such as flow direction, flow accumulation, stream networks, flow stream orders and erosion index were used within a Geographic Information Systems framework to quantify variation in nitrate and phosphate loads to headwater streams. Stream monitoring data for nutrient loads were used to correlate the observed spatial and temporal patterns with hydrological parameters using multiple linear regressions. Results from the wetness index calculated from a digital elevation model suggested a range of 0.10–16.39, with more than 35% having values less than 4.0. A Revised Universal Soil Loss Equation (RUSLE) predicted soil loss in the range of 0.01–4.0 t/ha/yr. Nitrate nitrogen levels in the study area paralleled precipitation patterns over time, with higher nitrate levels corresponding to high precipitation. Atmospheric deposition through precipitation could explain approximately 35% of total nitrate levels observed in streams. Among the different topographic variables and hydrological indices, results from the step-wise multiple regression suggested the following best predictors, (1) elevation range and upstream flow length for nitrate, (2) flow direction and upstream flow length for ammonia-nitrogen and slope, and (3) elevation range for phosphate levels. Differences in the landscape models observed for nitrate, phosphate and ammonia-nitrogen in the surface waters were attributed partly to differences in the chemical activity and source strengths of the different forms of these nutrients through agricultural management practices. The results identify geomorphologic and landscape characteristics that influence pollutant levels in the study area.

Journal

Environmental Monitoring and AssessmentSpringer Journals

Published: Jan 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off