Explicit Fourth-Order Runge–Kutta Method on Intel Xeon Phi Coprocessor

Explicit Fourth-Order Runge–Kutta Method on Intel Xeon Phi Coprocessor This paper concerns an Intel Xeon Phi implementation of the explicit fourth-order Runge–Kutta method (RK4) for very sparse matrices with very short rows. Such matrices arise during Markovian modeling of computer and telecommunication networks. In this work an implementation based on Intel Math Kernel Library (Intel MKL) routines and the authors’ own implementation, both using the CSR storage scheme and working on Intel Xeon Phi, were investigated. The implementation based on the Intel MKL library uses the high-performance BLAS and Sparse BLAS routines. In our application we focus on OpenMP style programming. We implement SpMV operation and vector addition using the basic optimizing techniques and the vectorization. We evaluate our approach in native and offload modes for various number of cores and thread allocation affinities. Both implementations (based on Intel MKL and made by the authors) were compared in respect of the time, the speedup and the performance. The numerical experiments on Intel Xeon Phi show that the performance of authors’ implementation is very promising and gives a gain of up to two times compared to the multithreaded implementation (based on Intel MKL) running on CPU (Intel Xeon processor) and even three times in comparison with the application which uses Intel MKL on Intel Xeon Phi. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Parallel Programming Springer Journals

Explicit Fourth-Order Runge–Kutta Method on Intel Xeon Phi Coprocessor

Loading next page...
 
/lp/springer-journals/explicit-fourth-order-runge-kutta-method-on-intel-xeon-phi-coprocessor-1mRxvbFOzr
Publisher
Springer Journals
Copyright
Copyright © 2016 by The Author(s)
Subject
Computer Science; Theory of Computation; Processor Architectures; Software Engineering/Programming and Operating Systems
ISSN
0885-7458
eISSN
1573-7640
D.O.I.
10.1007/s10766-016-0458-x
Publisher site
See Article on Publisher Site

Abstract

This paper concerns an Intel Xeon Phi implementation of the explicit fourth-order Runge–Kutta method (RK4) for very sparse matrices with very short rows. Such matrices arise during Markovian modeling of computer and telecommunication networks. In this work an implementation based on Intel Math Kernel Library (Intel MKL) routines and the authors’ own implementation, both using the CSR storage scheme and working on Intel Xeon Phi, were investigated. The implementation based on the Intel MKL library uses the high-performance BLAS and Sparse BLAS routines. In our application we focus on OpenMP style programming. We implement SpMV operation and vector addition using the basic optimizing techniques and the vectorization. We evaluate our approach in native and offload modes for various number of cores and thread allocation affinities. Both implementations (based on Intel MKL and made by the authors) were compared in respect of the time, the speedup and the performance. The numerical experiments on Intel Xeon Phi show that the performance of authors’ implementation is very promising and gives a gain of up to two times compared to the multithreaded implementation (based on Intel MKL) running on CPU (Intel Xeon processor) and even three times in comparison with the application which uses Intel MKL on Intel Xeon Phi.

Journal

International Journal of Parallel ProgrammingSpringer Journals

Published: Sep 29, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off