Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Existence of similar point configurations in thin subsets of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \us ...

Existence of similar point configurations in thin subsets of Rd\documentclass[12pt]{minimal}... We prove the existence of similar and multi-similar point configurations (or simplexes) in sets of fractional Hausdorff dimension in Euclidean space. Let d≥2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$d \ge 2$$\end{document} and E⊂Rd\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$E\subset {{{\mathbb {R}}} }^d$$\end{document} be a compact set. For k≥1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$k\ge 1$$\end{document}, define Δk(E)=|x1-x2|,⋯,|xi-xj|,⋯,|xk-xk+1|:xii=1k+1⊂E⊂Rk(k+1)/2,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \Delta _k(E)=\left\{ \left( |x^1-x^2|, \dots , |x^i-x^j|,\dots , |x^k-x^{k+1}|\right) : \left\{ x^i\right\} _{i=1}^{k+1}\subset E\right\} \subset {{{\mathbb {R}}} }^{k(k+1)/2}, \end{aligned}$$\end{document}the (k+1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(k+1)$$\end{document}-point configuration set of E. For k≤d\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$k\le d$$\end{document}, this is (up to permutations) the set of congruences of (k+1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(k+1)$$\end{document}-point configurations in E; for k>d\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$k>d$$\end{document}, it is the edge-length set of (k+1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(k+1)$$\end{document}-graphs whose vertices are in E. Previous works by a number of authors have found values sk,d<d\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$s_{k,d}<d$$\end{document} so that if the Hausdorff dimension of E satisfies dimH(E)>sk,d\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\dim _{\mathcal H}(E)>s_{k,d}$$\end{document}, then Δk(E)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta _k(E)$$\end{document} has positive Lebesgue measure. In this paper we study more refined properties of Δk(E)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta _k(E)$$\end{document}, namely the existence of similar or multi–similar configurations. For r∈R,r>0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$r\in {\mathbb {R}},\, r>0$$\end{document}, let Δkr(E):=t∈ΔkE:rt∈ΔkE⊂ΔkE.\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \Delta _{k}^{r}(E):=\left\{ \mathbf {t}\,\in \Delta _k\left( E\right) : r\mathbf {t}\,\in \Delta _k\left( E\right) \right\} \subset \Delta _k\left( E\right) . \end{aligned}$$\end{document}We show that if dimH(E)>sk,d\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\dim _{\mathcal H}(E)>s_{k,d}$$\end{document}, for a natural measure νk\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\nu _k$$\end{document} on Δk(E)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta _k(E)$$\end{document}, one has [inline-graphic not available: see fulltext] all r∈R+\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$r\in {\mathbb {R}}_+$$\end{document}. Thus, in E there exist many pairs of (k+1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(k+1)$$\end{document}-point configurations which are similar by the scaling factor r. We extend this to show the existence of multi–similar configurations of any multiplicity. These results can be viewed as variants and extensions, for compact thin sets, of theorems of Furstenberg, Katznelson and Weiss [7], Bourgain [2] and Ziegler [11] for sets of positive density in Rd\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {R}}^d$$\end{document}. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mathematische Zeitschrift Springer Journals

Existence of similar point configurations in thin subsets of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \us ...

Loading next page...
 
/lp/springer-journals/existence-of-similar-point-configurations-in-thin-subsets-of-rd-fS46iXC9ln

References (18)

Publisher
Springer Journals
Copyright
Copyright © Springer-Verlag GmbH Germany, part of Springer Nature 2020
ISSN
0025-5874
eISSN
1432-1823
DOI
10.1007/s00209-020-02537-1
Publisher site
See Article on Publisher Site

Abstract

We prove the existence of similar and multi-similar point configurations (or simplexes) in sets of fractional Hausdorff dimension in Euclidean space. Let d≥2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$d \ge 2$$\end{document} and E⊂Rd\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$E\subset {{{\mathbb {R}}} }^d$$\end{document} be a compact set. For k≥1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$k\ge 1$$\end{document}, define Δk(E)=|x1-x2|,⋯,|xi-xj|,⋯,|xk-xk+1|:xii=1k+1⊂E⊂Rk(k+1)/2,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \Delta _k(E)=\left\{ \left( |x^1-x^2|, \dots , |x^i-x^j|,\dots , |x^k-x^{k+1}|\right) : \left\{ x^i\right\} _{i=1}^{k+1}\subset E\right\} \subset {{{\mathbb {R}}} }^{k(k+1)/2}, \end{aligned}$$\end{document}the (k+1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(k+1)$$\end{document}-point configuration set of E. For k≤d\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$k\le d$$\end{document}, this is (up to permutations) the set of congruences of (k+1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(k+1)$$\end{document}-point configurations in E; for k>d\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$k>d$$\end{document}, it is the edge-length set of (k+1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(k+1)$$\end{document}-graphs whose vertices are in E. Previous works by a number of authors have found values sk,d<d\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$s_{k,d}<d$$\end{document} so that if the Hausdorff dimension of E satisfies dimH(E)>sk,d\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\dim _{\mathcal H}(E)>s_{k,d}$$\end{document}, then Δk(E)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta _k(E)$$\end{document} has positive Lebesgue measure. In this paper we study more refined properties of Δk(E)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta _k(E)$$\end{document}, namely the existence of similar or multi–similar configurations. For r∈R,r>0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$r\in {\mathbb {R}},\, r>0$$\end{document}, let Δkr(E):=t∈ΔkE:rt∈ΔkE⊂ΔkE.\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \Delta _{k}^{r}(E):=\left\{ \mathbf {t}\,\in \Delta _k\left( E\right) : r\mathbf {t}\,\in \Delta _k\left( E\right) \right\} \subset \Delta _k\left( E\right) . \end{aligned}$$\end{document}We show that if dimH(E)>sk,d\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\dim _{\mathcal H}(E)>s_{k,d}$$\end{document}, for a natural measure νk\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\nu _k$$\end{document} on Δk(E)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta _k(E)$$\end{document}, one has [inline-graphic not available: see fulltext] all r∈R+\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$r\in {\mathbb {R}}_+$$\end{document}. Thus, in E there exist many pairs of (k+1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(k+1)$$\end{document}-point configurations which are similar by the scaling factor r. We extend this to show the existence of multi–similar configurations of any multiplicity. These results can be viewed as variants and extensions, for compact thin sets, of theorems of Furstenberg, Katznelson and Weiss [7], Bourgain [2] and Ziegler [11] for sets of positive density in Rd\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {R}}^d$$\end{document}.

Journal

Mathematische ZeitschriftSpringer Journals

Published: Jun 5, 2020

There are no references for this article.