Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Exergy-energy analysis of full repowering of a steam power plant

Exergy-energy analysis of full repowering of a steam power plant Abstract A 320MW old steam power plant has been chosen for repowering in this paper. Considering the technical conditions and working life of the power plant, the full repowering method has been selected from different repowering methods. The power plant repowering has been analyzed for three different feed water flow rates: a flow rate equal to the flow rate at the condenser exit in the original plant when it works at nominal load, a flow rate at maximum load, and a flow rate when all the extractions are blocked. For each flow rates, two types of gas turbines have been examined: V94.2 and V94.3A. The effect of a duct burner has then been investigated in each of the above six cases. Steam is produced by a double-pressure heat recovery steam generator (HRSG) with reheat which obtains its required heat from the exhaust gases coming from the gas turbines. The results obtained from modeling and analyzing the energy-exergy of the original steam power plant and the repowered power plant indicate that the maximum efficiency of the repowered power plant is 52.04%. This maximum efficiency occurs when utilizing two V94.3A gas turbines without duct burner in the steam flow rate of the nominal load. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Frontiers in Energy" Springer Journals

Exergy-energy analysis of full repowering of a steam power plant

Loading next page...
 
/lp/springer-journals/exergy-energy-analysis-of-full-repowering-of-a-steam-power-plant-zYTj805loX

References (36)

Publisher
Springer Journals
Copyright
2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
ISSN
2095-1701
eISSN
2095-1698
DOI
10.1007/s11708-014-0342-6
Publisher site
See Article on Publisher Site

Abstract

Abstract A 320MW old steam power plant has been chosen for repowering in this paper. Considering the technical conditions and working life of the power plant, the full repowering method has been selected from different repowering methods. The power plant repowering has been analyzed for three different feed water flow rates: a flow rate equal to the flow rate at the condenser exit in the original plant when it works at nominal load, a flow rate at maximum load, and a flow rate when all the extractions are blocked. For each flow rates, two types of gas turbines have been examined: V94.2 and V94.3A. The effect of a duct burner has then been investigated in each of the above six cases. Steam is produced by a double-pressure heat recovery steam generator (HRSG) with reheat which obtains its required heat from the exhaust gases coming from the gas turbines. The results obtained from modeling and analyzing the energy-exergy of the original steam power plant and the repowered power plant indicate that the maximum efficiency of the repowered power plant is 52.04%. This maximum efficiency occurs when utilizing two V94.3A gas turbines without duct burner in the steam flow rate of the nominal load.

Journal

"Frontiers in Energy"Springer Journals

Published: Mar 1, 2015

There are no references for this article.