Evolution of shape isotropy in silica microparticles induced by the base

Evolution of shape isotropy in silica microparticles induced by the base Evolution of shape isotropy in silica microparticles synthesized by sol-gel method is examined by varying the concentration of ammonia. The morphology evolved from worm-like structure to monodisperse spheres. The shape evolution is attributed to the “Pearl-necklace” mechanism wherein the worm-like silica particles due to constrain in its mobility, collapse to an energetically favored spherical morphology with intermediate doll/frustum cone-like morphologies. Plausible reason for the collapse in morphology could be the conformational entropy of the worm-like particles to explore various re-arranged morphologies arising due to Rayleigh-Plateau instability. The collapse in morphology is analogous to the coil to globule transition in polymeric systems; however, the length scales explored in the present study are of the order of micrometers, and the collapse depends on the base concentration. The present system will serve as a model for understanding the various re-arrangements undergoing during the compaction of biological moieties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Colloid Polymer Science Springer Journals

Evolution of shape isotropy in silica microparticles induced by the base

Loading next page...
 
/lp/springer-journals/evolution-of-shape-isotropy-in-silica-microparticles-induced-by-the-2aHUWtNPqe
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Chemistry; Polymer Sciences; Soft and Granular Matter, Complex Fluids and Microfluidics; Characterization and Evaluation of Materials; Physical Chemistry; Food Science; Nanotechnology and Microengineering
ISSN
0303-402X
eISSN
1435-1536
D.O.I.
10.1007/s00396-017-4118-5
Publisher site
See Article on Publisher Site

Abstract

Evolution of shape isotropy in silica microparticles synthesized by sol-gel method is examined by varying the concentration of ammonia. The morphology evolved from worm-like structure to monodisperse spheres. The shape evolution is attributed to the “Pearl-necklace” mechanism wherein the worm-like silica particles due to constrain in its mobility, collapse to an energetically favored spherical morphology with intermediate doll/frustum cone-like morphologies. Plausible reason for the collapse in morphology could be the conformational entropy of the worm-like particles to explore various re-arranged morphologies arising due to Rayleigh-Plateau instability. The collapse in morphology is analogous to the coil to globule transition in polymeric systems; however, the length scales explored in the present study are of the order of micrometers, and the collapse depends on the base concentration. The present system will serve as a model for understanding the various re-arrangements undergoing during the compaction of biological moieties.

Journal

Colloid Polymer ScienceSpringer Journals

Published: Jun 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off