Evidence that CTR1-Mediated Ethylene Signal Transduction in Tomato is Encoded by a Multigene Family Whose Members Display Distinct Regulatory Features

Evidence that CTR1-Mediated Ethylene Signal Transduction in Tomato is Encoded by a Multigene... Ethylene governs a range of developmental and response processes in plants. In Arabidopsis thaliana, the Raf-like kinase CTR1 acts as a key negative regulator of ethylene responses. While only one gene with CTR1 function apparently exists in Arabidopsis, we have isolated a family of CTR1-like genes in tomato (Lycopersicon esculentum). Based on amino acid alignments and phylogenetic analysis, these tomato CTR1-like genes are more similar to Arabidopsis CTR1 than any other sequences in the Arabidopsis genome. Structural analysis reveals considerable conservation in the size and position of the exons between Arabidopsis and tomato CTR1 genomic sequences. Complementation of the Arabidopsis ctr1-8 mutant with each of the tomato CTR genes indicates that they are all capable of functioning as negative regulators of the ethylene pathway. We previously reported that LeCTR1 expression is up-regulated in response to ethylene. Here, quantitative real-time PCR was carried out to detail expression for LeCTR1 and the additional CTR1-like genes of tomato. Our results indicate that the tomato CTR1 gene family is differentially regulated at the mRNA level by ethylene and during stages of development marked by increased ethylene biosynthesis, including fruit ripening. The possibility of a multi-gene family of CTR1-like genes in other species besides tomato was examined through mining of EST and genomic sequence databases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Evidence that CTR1-Mediated Ethylene Signal Transduction in Tomato is Encoded by a Multigene Family Whose Members Display Distinct Regulatory Features

Loading next page...
 
/lp/springer-journals/evidence-that-ctr1-mediated-ethylene-signal-transduction-in-tomato-is-DoQdzRj1mB
Publisher
Springer Journals
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/B:PLAN.0000036371.30528.26
Publisher site
See Article on Publisher Site

Abstract

Ethylene governs a range of developmental and response processes in plants. In Arabidopsis thaliana, the Raf-like kinase CTR1 acts as a key negative regulator of ethylene responses. While only one gene with CTR1 function apparently exists in Arabidopsis, we have isolated a family of CTR1-like genes in tomato (Lycopersicon esculentum). Based on amino acid alignments and phylogenetic analysis, these tomato CTR1-like genes are more similar to Arabidopsis CTR1 than any other sequences in the Arabidopsis genome. Structural analysis reveals considerable conservation in the size and position of the exons between Arabidopsis and tomato CTR1 genomic sequences. Complementation of the Arabidopsis ctr1-8 mutant with each of the tomato CTR genes indicates that they are all capable of functioning as negative regulators of the ethylene pathway. We previously reported that LeCTR1 expression is up-regulated in response to ethylene. Here, quantitative real-time PCR was carried out to detail expression for LeCTR1 and the additional CTR1-like genes of tomato. Our results indicate that the tomato CTR1 gene family is differentially regulated at the mRNA level by ethylene and during stages of development marked by increased ethylene biosynthesis, including fruit ripening. The possibility of a multi-gene family of CTR1-like genes in other species besides tomato was examined through mining of EST and genomic sequence databases.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 10, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off