Evaluation of a speaker identification system with and without fusion using three databases in the presence of noise and handset effects

Evaluation of a speaker identification system with and without fusion using three databases in... In this study, a speaker identification system is considered consisting of a feature extraction stage which utilizes both power normalized cepstral coefficients (PNCCs) and Mel frequency cepstral coefficients (MFCC). Normalization is applied by employing cepstral mean and variance normalization (CMVN) and feature warping (FW), together with acoustic modeling using a Gaussian mixture model-universal background model (GMM-UBM). The main contributions are comprehensive evaluations of the effect of both additive white Gaussian noise (AWGN) and non-stationary noise (NSN) (with and without a G.712 type handset) upon identification performance. In particular, three NSN types with varying signal to noise ratios (SNRs) were tested corresponding to street traffic, a bus interior, and a crowded talking environment. The performance evaluation also considered the effect of late fusion techniques based on score fusion, namely, mean, maximum, and linear weighted sum fusion. The databases employed were TIMIT, SITW, and NIST 2008; and 120 speakers were selected from each database to yield 3600 speech utterances. As recommendations from the study, mean fusion is found to yield overall best performance in terms of speaker identification accuracy (SIA) with noisy speech, whereas linear weighted sum fusion is overall best for original database recordings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png EURASIP Journal on Advances in Signal Processing Springer Journals

Evaluation of a speaker identification system with and without fusion using three databases in the presence of noise and handset effects

Loading next page...
 
/lp/springer-journals/evaluation-of-a-speaker-identification-system-with-and-without-fusion-JOuNxZwNXW
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by The Author(s)
Subject
Engineering; Signal,Image and Speech Processing; Quantum Information Technology, Spintronics
eISSN
1687-6180
D.O.I.
10.1186/s13634-017-0515-7
Publisher site
See Article on Publisher Site

Abstract

In this study, a speaker identification system is considered consisting of a feature extraction stage which utilizes both power normalized cepstral coefficients (PNCCs) and Mel frequency cepstral coefficients (MFCC). Normalization is applied by employing cepstral mean and variance normalization (CMVN) and feature warping (FW), together with acoustic modeling using a Gaussian mixture model-universal background model (GMM-UBM). The main contributions are comprehensive evaluations of the effect of both additive white Gaussian noise (AWGN) and non-stationary noise (NSN) (with and without a G.712 type handset) upon identification performance. In particular, three NSN types with varying signal to noise ratios (SNRs) were tested corresponding to street traffic, a bus interior, and a crowded talking environment. The performance evaluation also considered the effect of late fusion techniques based on score fusion, namely, mean, maximum, and linear weighted sum fusion. The databases employed were TIMIT, SITW, and NIST 2008; and 120 speakers were selected from each database to yield 3600 speech utterances. As recommendations from the study, mean fusion is found to yield overall best performance in terms of speaker identification accuracy (SIA) with noisy speech, whereas linear weighted sum fusion is overall best for original database recordings.

Journal

EURASIP Journal on Advances in Signal ProcessingSpringer Journals

Published: Dec 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off