Access the full text.
Sign up today, get DeepDyve free for 14 days.
Reinforced concrete (RC) walls are commonly used in various structures to resist lateral forces. In the current paper, hybrid usage of stainless steel (SS) and glass fiber-reinforced polymer (GFRP) as an alternative of steel rebars, which is susceptible to corrosion, is proposed to improve durability of RC walls. Due to the high cost of SS compared to GFRP, SS rebars are utilized as concentrated reinforcement (RFT) in plastic hinge regions while GFRP rebars are used elsewhere. This combination has the advantage of providing adequate ductility and strength needed to resist both gravity and lateral forces effectively. A comprehensive parametric study is conducted on a large number of RC walls with different dimensions and RFT ratios under various axial compressive loads. Pushover analysis is utilized to analyze the RC walls using a robust finite element software. The results of the parametric study are utilized to develop a set of design equations that can be used to estimate amount of SS-GFRP RFT as a replacement to steel rebars. The obtained corrosion-resistant walls have stiffness, lateral strength, and ductility equivalent to the steel-reinforced walls. The developed equations are examined by investigating the response of a case study RC building under seismic loading.
Journal of The Institution of Engineers (India):Series A – Springer Journals
Published: Dec 1, 2022
Keywords: Corrosion; Ductility; Hybrid; Pushover
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.