Access the full text.
Sign up today, get DeepDyve free for 14 days.
N. Cherskova, S. Khoronenkova, V. Tishkov (2010)
The role of residues Arg169 and Arg220 in intersubunit interactions of yeast D-amino acid oxidaseRussian Chemical Bulletin, 59
(2008)
Russ. Chem. Bull. Int. Ed. Anal. Biochem
G. Fisher, N. Lorenzo, H. Abe, E. Fujita, William II, C. Emory, M. Fiore, A. D’Aniello (2005)
Free D- and L-amino acids in ventricular cerebrospinal fluid from Alzheimer and normal subjectsAmino Acids, 15
S. Sacchi, E. Rosini, Laura Caldinelli, L. Pollegioni (2012)
Biosensors for D-amino acid detection.Methods in molecular biology, 794
S. Khoronenkova, V. Tishkov (2008)
High-throughput screening assay for D-amino acid oxidase.Analytical biochemistry, 374 2
S. Khoronenkova, V. Tishkov (2008)
Recombinant D-amino Acid Oxidase with Improved PropertiesElectrochimica Acta
Siamak Shahidi, A. Komaki (2008)
BRAIN RES BULL
A. Boselli, S. Sacchi, V. Job, M. Pilone, L. Pollegioni (2002)
Role of tyrosine 238 in the active site of Rhodotorula gracilis D-amino acid oxidase. A site-directed mutagenesis study.European journal of biochemistry, 269 19
(1996)
Life Sci
I. Chumakov, M. Blumenfeld, O. Guerassimenko, L. Cavarec, M. Palicio, H. Abderrahim, L. Bougueleret, Caroline Barry, Hiroaki Tanaka, P. Rosa, A. Puech, N. Tahri, A. Cohen-Akenine, Sylvain Delabrosse, S. Lissarrague, Françoise-Pascaline Picard, Karelle Maurice, L. Essioux, P. Millasseau, Pascale Grel, V. Debailleul, A. Simon, D. Caterina, I. Dufaure, K. Malekzadeh, M. Belova, J. Luan, M. Bouillot, J. Sambucy, Gwenael Primas, M. Saumier, Nadia Boubkiri, Sandrine Martin-Saumier, M. Nasroune, H. Peixoto, A. Delaye, Virginie Pinchot, Mariam Bastucci, S. Guillou, M. Chevillon, R. Sainz-Fuertes, S. Meguenni, J. Aurich-Costa, D. Chérif, Anne Gimalac, C. Duijn, D. Gauvreau, Gail Ouelette, I. Fortier, John Realson, T. Sherbatich, N. Riazanskaia, E. Rogaev, P. Raeymaekers, J. Aerssens, F. Konings, W. Luyten, F. Macciardi, P. Sham, R. Straub, D. Weinberger, Nadine Cohen, D. Cohen (2002)
Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophreniaProceedings of the National Academy of Sciences of the United States of America, 99
(2000)
FASEB J
date's dissertation [in Russian
(2005)
Neurosci. Res
G. Fisher, A. D’Aniello, A. Vetere, L. Padula, Gregory Cusano, E. Man (1991)
Free D-aspartate and D-alanine in normal and Alzheimer brainBrain Research Bulletin, 26
K. Hamase, R. Konno, A. Morikawa, K. Zaitsu (2005)
Sensitive determination of D-amino acids in mammals and the effect of D-amino-acid oxidase activity on their amounts.Biological & pharmaceutical bulletin, 28 9
S. Umhau, L. Pollegioni, G. Molla, K. Diederichs, W. Welte, M. Pilone, S. Ghisla (2000)
The x-ray structure of D-amino acid oxidase at very high resolution identifies the chemical mechanism of flavin-dependent substrate dehydrogenation.Proceedings of the National Academy of Sciences of the United States of America, 97 23
(2006)
Mosc. Univ. Chem. Bull
(2005)
Biochemistry (Moscow)
L. Frattini, E. Rosini, L. Pollegioni, M. Pilone (2011)
Analyzing the D-amino acid content in biological samples by engineered enzymes.Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 879 29
M. Maekawa, Masashi Watanabe, S. Yamaguchi, R. Konno, Y. Hori (2005)
Spatial learning and long-term potentiation of mutant mice lacking d-amino-acid oxidaseNeuroscience Research, 53
A. D’Aniello, M. Fiore, G. Fisher, A. Milone, Angelo Seleni, Salvatore D'Aniello, A. Perna, D. Ingrosso (2000)
Occurrence of D‐aspartic acid and N‐methyl‐D‐aspartic acid in rat neuroendocrine tissues and their role in the modulation of luteinizing hormone and growth hormone releaseThe FASEB Journal, 14
(2008)
Anal. Chem
(2005)
Biol. Pharm. Bull
P. Pernot, J. Mothet, O. Schuvailo, A. Soldatkin, L. Pollegioni, M. Pilone, M. Adeline, R. Cespuglio, S. Marinesco (2007)
Characterization of a yeast D-amino acid oxidase microbiosensor for D-serine detection in the central nervous system.Analytical chemistry, 80 5
A. D’Aniello, A. Cosmo, C. Cristo, L. Annunziato, L. Petrucelli, G. Fisher (1996)
Involvement of D-aspartic acid in the synthesis of testosterone in rat testes.Life sciences, 59 2
(2012)
Methods Mol. Biol
(2002)
Eur. J. Biochem
G. D'aniello, A. Tolino, A. D’Aniello, F. Errico, G. Fisher, M. Fiore (2000)
The role of D-aspartic acid and N-methyl-D-aspartic acid in the regulation of prolactin release.Endocrinology, 141 10
N. Komarova, I. Golubev, S. Khoronenkova, V. Tishkov (2012)
Mutant d-amino acid oxidase with higher catalytic efficiency toward d-amino acids with bulky side chainsRussian Chemical Bulletin, 61
(2008)
Chin. J. Biotechnol
(2007)
Byull. Izobret. Poleznye Modeli
Francesco Sciacca, Daniel Bell (1916)
Amino acidsReactions Weekly, 1096
Paul Harrison, M. Owen
For Personal Use. Only Reproduce with Permission from the Lancet Publishing Group. Genes for Schizophrenia? Recent Findings and Their Pathophysiological Implications
(2011)
J. Chromatogr. B
Y. Takigawa, H. Homma, J. Lee, T. Fukushima, T. Santa, T. Iwatsubo, K. Imai (1998)
D-aspartate uptake into cultured rat pinealocytes and the concomitant effect on L-aspartate levels and melatonin secretion.Biochemical and biophysical research communications, 248 3
(2000)
Proc. Natl. Acad. Sci. USA, 97
V. Tishkov, S. Khoronenkova
Amino Acid Oxidase : Structure , Catalytic Mechanism , and Practical Application
Natural D-amino acid oxidases (DAAO) are not suitable for selective determination of D-amino acids due to their broad substrate specificity profiles. Analysis of the 3D-structure of the DAAO enzyme from the yeast Trigonopsis variabilis (TvDAAO) revealed the Phe258 residue located at the surface of the protein globule to be in the entrance to the active site. The Phe258 residue was mutated to Ala, Ser, and Tyr residues. The mutant TvDAAOs with amino acid substitutions Phe258Ala, Phe258Ser, and Phe258Tyr were purified to homogeneity and their thermal stability and substrate specificity were studied. These substitutions resulted in either slight stabilization (Phe258Tyr) or destabilization (Phe258Ser) of the enzyme. The change in half-inactivation periods was less than twofold. However, these substitutions caused dramatic changes in substrate specificity. Increasing the side chain size with the Phe258Tyr substitution decreased the kinetic parameters with all the D-amino acids studied. For the two other substitutions, the substrate specificity profiles narrowed. The catalytic efficiency increased only for D-Tyr, D-Phe, and D-Leu, and for all other D-amino acids this parameter dramatically decreased. The improvement of catalytic efficiency with D-Tyr, D-Phe, and D-Leu for TvDAAO Phe258Ala was 3.66-, 11.7-, and 1.5-fold, and for TvDAAO Phe258Ser it was 1.7-, 4.75-, and 6.61-fold, respectively.
Biochemistry (Moscow) – Springer Journals
Published: Oct 17, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.