Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Electrochemical degradation of C.I. Reactive Orange 107 using Gadolinium (Gd3+), Neodymium (Nd3+) and Samarium (Sm3+) doped cerium oxide nanoparticles

Electrochemical degradation of C.I. Reactive Orange 107 using Gadolinium (Gd3+), Neodymium (Nd3+)... Ceria-based composites have been previously developed as functional electrolytes for high performance of solid oxide fuel cells that require high functional electrolyte materials that can provide high ion conductivity for sufficient current output. These composites display hybrid proton and oxygen ion conduction. We developed further composite electrolyte materials containing a catalyst such as rare earth elements; gadolinium (Gd3+), neodymium (Nd3+) and samarium (Sm3+) doped ceria (Ce0.8Gd0.2O2, Ce0.8Nd0.2O2 and Ce0.8Sm0.2O2) to investigate the electrochemical treatment of C.I. Reactive Orange 107. An experimental results showed that the nanomaterial plays an important role for the electrochemical oxidation of reactive dye, where Ce0.8Gd0.2O2, Ce0.8Nd0.2O2 and Ce0.8Sm0.2O2 lead complete mineralization of selective dye. The results indicate that the overall performance in these schemes of operation is successful. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Industrial Chemistry Springer Journals

Electrochemical degradation of C.I. Reactive Orange 107 using Gadolinium (Gd3+), Neodymium (Nd3+) and Samarium (Sm3+) doped cerium oxide nanoparticles

Loading next page...
 
/lp/springer-journals/electrochemical-degradation-of-c-i-reactive-orange-107-using-aA7a5bijFZ
Publisher
Springer Journals
Copyright
Copyright © 2015 by The Author(s)
Subject
Chemistry; Industrial Chemistry/Chemical Engineering; Polymer Sciences; Nanochemistry; Environmental Chemistry
ISSN
2228-5970
eISSN
2228-5547
DOI
10.1007/s40090-015-0051-y
Publisher site
See Article on Publisher Site

Abstract

Ceria-based composites have been previously developed as functional electrolytes for high performance of solid oxide fuel cells that require high functional electrolyte materials that can provide high ion conductivity for sufficient current output. These composites display hybrid proton and oxygen ion conduction. We developed further composite electrolyte materials containing a catalyst such as rare earth elements; gadolinium (Gd3+), neodymium (Nd3+) and samarium (Sm3+) doped ceria (Ce0.8Gd0.2O2, Ce0.8Nd0.2O2 and Ce0.8Sm0.2O2) to investigate the electrochemical treatment of C.I. Reactive Orange 107. An experimental results showed that the nanomaterial plays an important role for the electrochemical oxidation of reactive dye, where Ce0.8Gd0.2O2, Ce0.8Nd0.2O2 and Ce0.8Sm0.2O2 lead complete mineralization of selective dye. The results indicate that the overall performance in these schemes of operation is successful.

Journal

International Journal of Industrial ChemistrySpringer Journals

Published: Aug 15, 2015

References