Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Electrochemical Corrosion and In vitro Biocompatibility Performance of AZ31Mg/Al2O3 Nanocomposite in Simulated Body Fluid

Electrochemical Corrosion and In vitro Biocompatibility Performance of AZ31Mg/Al2O3 Nanocomposite... In this present investigation, AZ31 alloy nanocomposite was prepared with the inclusion of Al2O3 nanoparticles using innovative disintegrated melt deposition (DMD) process followed by hot extrusion to improve the corrosion resistance and in vitro biocompatibility in simulated body fluid (SBF). This investigation systematically inspected the degradation performances of AZ31 alloy with Al2O3 nanoparticles through hydrogen evolution, weight loss and electrochemical methods in SBF. Further, the surface microstructure with the in vitro mineralization of the alloys in SBF was characterized by XRD, XPS, and SEM/EDS analysis. It was seen that the addition of Al2O3 nanoparticles significantly decreased the weight loss of AZ31 alloy substrates after 336 h of exposure in SBF. The corrosion resistance of the monolithic and nanocomposite samples was evaluated using potentiodynamic polarization tests, electrochemical impedance spectroscopy measurements in short- and long-term periods. Accordingly, the electrochemical analysis in SBF showed that the corrosion resistance performance of the AZ31 alloy enhanced considerably due to the incorporation of Al2O3 nanoparticles as reinforcement. Moreover, the rapid formation of bone-like apatite layer on the surface of the nanocomposite substrate demonstrated a good bioactivity of the nanocomposite samples in SBF. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Engineering and Performance Springer Journals

Electrochemical Corrosion and In vitro Biocompatibility Performance of AZ31Mg/Al2O3 Nanocomposite in Simulated Body Fluid

Loading next page...
 
/lp/springer-journals/electrochemical-corrosion-and-in-vitro-biocompatibility-performance-of-00yLbcRkIY

References (32)

Publisher
Springer Journals
Copyright
Copyright © 2018 by ASM International
Subject
Materials Science; Characterization and Evaluation of Materials; Tribology, Corrosion and Coatings; Quality Control, Reliability, Safety and Risk; Engineering Design
ISSN
1059-9495
eISSN
1544-1024
DOI
10.1007/s11665-018-3448-x
Publisher site
See Article on Publisher Site

Abstract

In this present investigation, AZ31 alloy nanocomposite was prepared with the inclusion of Al2O3 nanoparticles using innovative disintegrated melt deposition (DMD) process followed by hot extrusion to improve the corrosion resistance and in vitro biocompatibility in simulated body fluid (SBF). This investigation systematically inspected the degradation performances of AZ31 alloy with Al2O3 nanoparticles through hydrogen evolution, weight loss and electrochemical methods in SBF. Further, the surface microstructure with the in vitro mineralization of the alloys in SBF was characterized by XRD, XPS, and SEM/EDS analysis. It was seen that the addition of Al2O3 nanoparticles significantly decreased the weight loss of AZ31 alloy substrates after 336 h of exposure in SBF. The corrosion resistance of the monolithic and nanocomposite samples was evaluated using potentiodynamic polarization tests, electrochemical impedance spectroscopy measurements in short- and long-term periods. Accordingly, the electrochemical analysis in SBF showed that the corrosion resistance performance of the AZ31 alloy enhanced considerably due to the incorporation of Al2O3 nanoparticles as reinforcement. Moreover, the rapid formation of bone-like apatite layer on the surface of the nanocomposite substrate demonstrated a good bioactivity of the nanocomposite samples in SBF.

Journal

Journal of Materials Engineering and PerformanceSpringer Journals

Published: Jun 11, 2018

There are no references for this article.