Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: A modeling analysis

Effects of long-term rainfall variability on evapotranspiration and soil water distribution in... We used the patch arid land simulator (PALS-FT) – a simple, mechanistic ecosystem model – to explore long-term variation in evapotranspiration (ET) as a function of variability in rainfall and plant functional type (FT) at a warm desert site in southern New Mexico. PALS-FT predicts soil evaporation and plant transpiration of a canopy composed of five principal plant FTs: annuals, perennial forbs, C4 grasses, sub-shrubs, and evergreen shrubs. For each FT, the fractional contribution to transpiration depends upon phenological activity and cover as well as daily leaf stomatal conductance, which is a function of plant water potential, calculated from root-weighted soil water potential in six soil layers. Simulations of water loss from two plant community types (grass- vs. shrub-dominated) were carried out for the Jornada Basin, New Mexico, using 100 years of daily precipitation data (1891–1990). In order to emphasize variability associated with rainfall and fundamental differences in FT composition between communities, the seasonal patterns cover of perennials were held constant from year to year. Because the relative amount of year to year cover of winter and summer annual species is highly variable in this ecosystem, we examined their influence on model predictions of ET by allowing their cover to be variable, fixed, or absent. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Ecology Springer Journals

Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: A modeling analysis

Plant Ecology, Volume 150 (2) – Sep 23, 2004

Loading next page...
 
/lp/springer-journals/effects-of-long-term-rainfall-variability-on-evapotranspiration-and-2509Wr4ZEO
Publisher
Springer Journals
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Plant Sciences
ISSN
1385-0237
eISSN
1573-5052
D.O.I.
10.1023/A:1026530522612
Publisher site
See Article on Publisher Site

Abstract

We used the patch arid land simulator (PALS-FT) – a simple, mechanistic ecosystem model – to explore long-term variation in evapotranspiration (ET) as a function of variability in rainfall and plant functional type (FT) at a warm desert site in southern New Mexico. PALS-FT predicts soil evaporation and plant transpiration of a canopy composed of five principal plant FTs: annuals, perennial forbs, C4 grasses, sub-shrubs, and evergreen shrubs. For each FT, the fractional contribution to transpiration depends upon phenological activity and cover as well as daily leaf stomatal conductance, which is a function of plant water potential, calculated from root-weighted soil water potential in six soil layers. Simulations of water loss from two plant community types (grass- vs. shrub-dominated) were carried out for the Jornada Basin, New Mexico, using 100 years of daily precipitation data (1891–1990). In order to emphasize variability associated with rainfall and fundamental differences in FT composition between communities, the seasonal patterns cover of perennials were held constant from year to year. Because the relative amount of year to year cover of winter and summer annual species is highly variable in this ecosystem, we examined their influence on model predictions of ET by allowing their cover to be variable, fixed, or absent.

Journal

Plant EcologySpringer Journals

Published: Sep 23, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off