Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effects of implicit visual feedback distortion on human gait

Effects of implicit visual feedback distortion on human gait Gait rehabilitation after stroke often utilizes treadmill training delivered by either therapists or robotic devices. However, clinical results have shown no benefit from this modality when compared to usual care. On the contrary, results were inferior; perhaps, because in its present form it is not interactive and at least for stroke, central pattern generators at the spinal level do not appear to be the key to promote recovery. To enable gait therapy to be more effective, therapy must be interactive and visual feedback appears to be an important option to engage patients’ participation. In this study, we tested healthy subjects to see whether an implicit “visual feedback distortion” influences gait spatial pattern. Subjects were not aware of the visual distortion nor did they realize changes in their gait pattern. The visual feedback of step length symmetry was distorted so that subjects perceived their step length as being asymmetric during treadmill training. We found that a gradual distortion of visual feedback, without explicit knowledge of the manipulation, systematically modulated gait step length away from symmetry and that the visual distortion effect was robust even in the presence of cognitive load. This indicates that although the visual feedback display used in this study did not create a conscious and vivid sensation of self-motion (the properties of the optical flow), experimental modifications of visual information of subjects’ movement were found to cause implicit gait modulation. Nevertheless, our results indicate that modulation with visual distortion may require cognitive resources because during the distraction task, the amount of gait modulation was reduced. Our results suggest that a therapeutic program involving visual feedback distortion, in the context of gait rehabilitation, may provide an effective way to help subjects correct gait patterns, thereby improving the outcome of rehabilitation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Brain Research Springer Journals

Effects of implicit visual feedback distortion on human gait

Experimental Brain Research , Volume 218 (3) – May 1, 2012

Loading next page...
 
/lp/springer-journals/effects-of-implicit-visual-feedback-distortion-on-human-gait-VuoKHSBM9p

References (32)

Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Biomedicine; Neurosciences; Neurology
ISSN
0014-4819
eISSN
1432-1106
DOI
10.1007/s00221-012-3044-5
pmid
22411579
Publisher site
See Article on Publisher Site

Abstract

Gait rehabilitation after stroke often utilizes treadmill training delivered by either therapists or robotic devices. However, clinical results have shown no benefit from this modality when compared to usual care. On the contrary, results were inferior; perhaps, because in its present form it is not interactive and at least for stroke, central pattern generators at the spinal level do not appear to be the key to promote recovery. To enable gait therapy to be more effective, therapy must be interactive and visual feedback appears to be an important option to engage patients’ participation. In this study, we tested healthy subjects to see whether an implicit “visual feedback distortion” influences gait spatial pattern. Subjects were not aware of the visual distortion nor did they realize changes in their gait pattern. The visual feedback of step length symmetry was distorted so that subjects perceived their step length as being asymmetric during treadmill training. We found that a gradual distortion of visual feedback, without explicit knowledge of the manipulation, systematically modulated gait step length away from symmetry and that the visual distortion effect was robust even in the presence of cognitive load. This indicates that although the visual feedback display used in this study did not create a conscious and vivid sensation of self-motion (the properties of the optical flow), experimental modifications of visual information of subjects’ movement were found to cause implicit gait modulation. Nevertheless, our results indicate that modulation with visual distortion may require cognitive resources because during the distraction task, the amount of gait modulation was reduced. Our results suggest that a therapeutic program involving visual feedback distortion, in the context of gait rehabilitation, may provide an effective way to help subjects correct gait patterns, thereby improving the outcome of rehabilitation.

Journal

Experimental Brain ResearchSpringer Journals

Published: May 1, 2012

There are no references for this article.