Effects of cuticular wax content and specific leaf area on accumulation and partition of PAHs in different tissues of wheat leaf

Effects of cuticular wax content and specific leaf area on accumulation and partition of PAHs in... An indoor simulation experiment was conducted to explore the effects of cuticular wax content and specific leaf area (SLA) on accumulation and distribution of PAHs in different tissues of wheat leaf. Three levels (0, 1.25, 6.0 mg L−1) of mixed solution of five PAHs (Σ5PAHs) including phenanthrene (PHE), anthracene (ANT), pyrene (PYR), benz[a]anthracene (BaA), and benzo[a]pyrene (BaP) were sprayed on leaves of seven varieties of winter wheat for every other day during 20 consecutive days. Shoot and root biomass of wheat under 6.0 mg L−1 Σ5PAHs exposure were 5.87 and 0.33 g, which were significantly (p < 0.05) lower than those (7.14 and 0.65 g) without spraying Σ5PAHs solution, respectively. Elevated Σ5PAHs concentration in spraying solution significantly (p < 0.0001) decreased cuticular wax content (59.1 and 65.1 vs. 67.8 mg g−1) in leaves of wheat but exerted slight effects on SLA. Regardless of spraying Σ5PAHs or not, SLA in leaves of Jiaomai (269–276 cm2 g−1) and Zhengmai (265–285 cm2 g−1) and cuticular wax content (104–118 mg g−1) in leaves of Zhengmai were significantly higher than other varieties of wheat, respectively. Σ5PAHs concentration in cuticular waxes ranged from 24,616 to 106,353 μg kg−1, which was 2~3 orders and 1~2 orders of magnitude higher than that in mesophylls (46.0–535 μg kg−1) and leaves (785–5366 μg kg−1). There was a significant (r = 0.46, p < 0.05, n = 28) positive correlation between SLA and Σ5PAHs concentration in wheat leaves when spraying 1.25 mg L−1 of Σ5PAHs. The present study indicated that cuticular wax content was significantly (p < 0.01) positive correlated with Σ5PAHs concentration in the leaves and the translocation factor (TFw−m) of PHE, ANT, PYR, and Σ5PAHs from cuticular wax to mesophyll. Based on principal component analysis (PCA), cuticular wax content was the main limiting factor for folia uptake of PAHs in winter wheat. The present study suggested that cuticular wax could play significant roles in foliar uptake of PAHs of wheat via affecting their accumulation in cuticular wax and translocation to mesophyll. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Effects of cuticular wax content and specific leaf area on accumulation and partition of PAHs in different tissues of wheat leaf

Loading next page...
 
/lp/springer-journals/effects-of-cuticular-wax-content-and-specific-leaf-area-on-c7P2BWFaVm
Publisher
Springer Journals
Copyright
Copyright © Springer-Verlag GmbH Germany, part of Springer Nature 2020
ISSN
0944-1344
eISSN
1614-7499
DOI
10.1007/s11356-020-08409-9
Publisher site
See Article on Publisher Site

Abstract

An indoor simulation experiment was conducted to explore the effects of cuticular wax content and specific leaf area (SLA) on accumulation and distribution of PAHs in different tissues of wheat leaf. Three levels (0, 1.25, 6.0 mg L−1) of mixed solution of five PAHs (Σ5PAHs) including phenanthrene (PHE), anthracene (ANT), pyrene (PYR), benz[a]anthracene (BaA), and benzo[a]pyrene (BaP) were sprayed on leaves of seven varieties of winter wheat for every other day during 20 consecutive days. Shoot and root biomass of wheat under 6.0 mg L−1 Σ5PAHs exposure were 5.87 and 0.33 g, which were significantly (p < 0.05) lower than those (7.14 and 0.65 g) without spraying Σ5PAHs solution, respectively. Elevated Σ5PAHs concentration in spraying solution significantly (p < 0.0001) decreased cuticular wax content (59.1 and 65.1 vs. 67.8 mg g−1) in leaves of wheat but exerted slight effects on SLA. Regardless of spraying Σ5PAHs or not, SLA in leaves of Jiaomai (269–276 cm2 g−1) and Zhengmai (265–285 cm2 g−1) and cuticular wax content (104–118 mg g−1) in leaves of Zhengmai were significantly higher than other varieties of wheat, respectively. Σ5PAHs concentration in cuticular waxes ranged from 24,616 to 106,353 μg kg−1, which was 2~3 orders and 1~2 orders of magnitude higher than that in mesophylls (46.0–535 μg kg−1) and leaves (785–5366 μg kg−1). There was a significant (r = 0.46, p < 0.05, n = 28) positive correlation between SLA and Σ5PAHs concentration in wheat leaves when spraying 1.25 mg L−1 of Σ5PAHs. The present study indicated that cuticular wax content was significantly (p < 0.01) positive correlated with Σ5PAHs concentration in the leaves and the translocation factor (TFw−m) of PHE, ANT, PYR, and Σ5PAHs from cuticular wax to mesophyll. Based on principal component analysis (PCA), cuticular wax content was the main limiting factor for folia uptake of PAHs in winter wheat. The present study suggested that cuticular wax could play significant roles in foliar uptake of PAHs of wheat via affecting their accumulation in cuticular wax and translocation to mesophyll.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: May 23, 2020

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off