Access the full text.
Sign up today, get DeepDyve free for 14 days.
Let f i be polynomials in n variables without a common zero. Hilbert’s Nullstellensatz says that there are polynomials g i such that ∑g i f i =1. The effective versions of this result bound the degrees of the g i in terms of the degrees of the f j . The aim of this paper is to generalize this to the case when the f i are replaced by arbitrary ideals. Applications to the Bézout theorem, to Łojasiewicz–type inequalities and to deformation theory are also discussed.
Journal of the European Mathematical Society – Springer Journals
Published: Sep 1, 1999
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.