Effect of the antioxidant action of Ginkgo biloba extract (EGb 761) on aging and oxidative stress

Effect of the antioxidant action of Ginkgo biloba extract (EGb 761) on aging and oxidative stress Aging is responsible for oxidative damage to DNA, protein, lipid, and other macromolecules linked to tissue alterations. The resultant damage contributes significantly to degenerative diseases, to include those of the brain, sensorial tissues, and cardiovascular system. To protect cellular components from oxyradical attack, especially lipoperoxidation, a substantial interest in the use of antioxidants has evolved. A free radical scavenger, Ginkgo biloba extract (EGb 761) may be effective in fighting the oxidative stress related to aging. Many data support the efficacy of EGb 761 in biological model systems. In aging processes, EGb 761 may ameliorate the mitochondria respiratory chain function by quenching the superoxide anion, and the hydroxyl and peroxyl radicals. It protects the brain by facilitating the uptake of neurotransmitters and by reducing ischemia-reperfusion episodes and level of apoptosis. Moreover, in sensorial tissues, EGb 761 reduces apoptosis in the olfactive bulb and in the retinal pigmented epithelium of the eye, and protects against the lipoperoxidation alteration of the retina that results in a decrease of the electroretinogram response. In the cardiovascular system, by a direct effect on oxidative low density lipoproteins, EGb 761 may decrease atherosclerosis evolution, and is shown to accelerate cardiac mechanical recovery after ischemia-reperfusion. In conclusion, the antioxidant effects of EGb 761 noted in many experimental data, may explain the therapeutic efficacy observed in clinical trials of the elderly. These beneficial properties seem in part to come from the activity of EGb 761 constituents, such as flavonoids and terpens. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png AGE Springer Journals

Effect of the antioxidant action of Ginkgo biloba extract (EGb 761) on aging and oxidative stress

AGE, Volume 20 (3) – May 26, 1997

Loading next page...
 
/lp/springer-journals/effect-of-the-antioxidant-action-of-ginkgo-biloba-extract-egb-761-on-9T4BrPWiSs
Publisher
Springer Journals
Copyright
Copyright © 1997 by American Aging Association, Inc.
Subject
Life Sciences; Geriatrics/Gerontology; Cell Biology; Molecular Medicine
ISSN
0161-9152
eISSN
1574-4647
D.O.I.
10.1007/s11357-997-0013-1
Publisher site
See Article on Publisher Site

Abstract

Aging is responsible for oxidative damage to DNA, protein, lipid, and other macromolecules linked to tissue alterations. The resultant damage contributes significantly to degenerative diseases, to include those of the brain, sensorial tissues, and cardiovascular system. To protect cellular components from oxyradical attack, especially lipoperoxidation, a substantial interest in the use of antioxidants has evolved. A free radical scavenger, Ginkgo biloba extract (EGb 761) may be effective in fighting the oxidative stress related to aging. Many data support the efficacy of EGb 761 in biological model systems. In aging processes, EGb 761 may ameliorate the mitochondria respiratory chain function by quenching the superoxide anion, and the hydroxyl and peroxyl radicals. It protects the brain by facilitating the uptake of neurotransmitters and by reducing ischemia-reperfusion episodes and level of apoptosis. Moreover, in sensorial tissues, EGb 761 reduces apoptosis in the olfactive bulb and in the retinal pigmented epithelium of the eye, and protects against the lipoperoxidation alteration of the retina that results in a decrease of the electroretinogram response. In the cardiovascular system, by a direct effect on oxidative low density lipoproteins, EGb 761 may decrease atherosclerosis evolution, and is shown to accelerate cardiac mechanical recovery after ischemia-reperfusion. In conclusion, the antioxidant effects of EGb 761 noted in many experimental data, may explain the therapeutic efficacy observed in clinical trials of the elderly. These beneficial properties seem in part to come from the activity of EGb 761 constituents, such as flavonoids and terpens.

Journal

AGESpringer Journals

Published: May 26, 1997

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off