Effect of mechanical vibration on Ra, Rq, Rz, and Rt roughness parameters

Effect of mechanical vibration on Ra, Rq, Rz, and Rt roughness parameters The effect of mechanical vibration on the roughness parameters (Ra, Rq, Rz and Rt) obtained by an electromechanical surface roughness tester in two samples, a stainless steel with Ra equal to 0.369 μm and a carbon steel with Ra of 5.342 μm, is discussed in this article. The tests were performed by introducing vibration with different values of frequency and amplitude. The measurement uncertainty associated with all roughness parameters was estimated by applying the GUM method proposed in the JCGM 101. The analysis of variance (ANOVA) technique was applied, and it was observed that the variables frequency and acceleration plus interaction between them were statistically significant with a 95% confidence level for all parameters evaluated. In the stainless steel sample, frequency produced the greatest effects on the values of roughness parameters, except for Ra value, which was more influenced by the acceleration. It was also found that the effect of the interaction between frequency and acceleration produced significant effects on the values of Rq and Rz. In the carbon steel sample, the interaction between frequency and acceleration was the main generator of changes in the average values of all parameters evaluated. For Ra, Rq, and Rz, the frequency was also a statistically significant variable. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Loading next page...
 
/lp/springer-journals/effect-of-mechanical-vibration-on-ra-rq-rz-and-rt-roughness-parameters-wKwG74eItD
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0137-0
Publisher site
See Article on Publisher Site

Abstract

The effect of mechanical vibration on the roughness parameters (Ra, Rq, Rz and Rt) obtained by an electromechanical surface roughness tester in two samples, a stainless steel with Ra equal to 0.369 μm and a carbon steel with Ra of 5.342 μm, is discussed in this article. The tests were performed by introducing vibration with different values of frequency and amplitude. The measurement uncertainty associated with all roughness parameters was estimated by applying the GUM method proposed in the JCGM 101. The analysis of variance (ANOVA) technique was applied, and it was observed that the variables frequency and acceleration plus interaction between them were statistically significant with a 95% confidence level for all parameters evaluated. In the stainless steel sample, frequency produced the greatest effects on the values of roughness parameters, except for Ra value, which was more influenced by the acceleration. It was also found that the effect of the interaction between frequency and acceleration produced significant effects on the values of Rq and Rz. In the carbon steel sample, the interaction between frequency and acceleration was the main generator of changes in the average values of all parameters evaluated. For Ra, Rq, and Rz, the frequency was also a statistically significant variable.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Feb 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off