Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effect of machining parameters on edge-chipping during drilling of glass using grinding-aided electrochemical discharge machining (G-ECDM)

Effect of machining parameters on edge-chipping during drilling of glass using grinding-aided... The problem of eliminating edge-chipping at the entrance and exit of the hole while drilling brittle materials is still a challenging task in different industries. Grinding-aided electrochemical discharge machining (G-ECDM) is a promising technology for drilling advanced hard-to-machine ceramics, glass, composites, and other brittle materials. Edge-chipping at the entrance of the hole can be fully eliminated by optimizing the machining parameters of G-ECDM. However, edge-chipping at the exit of the hole is difficult to eliminate during the drilling of ceramics and glass. This investigation suggests some practical ways to reduce edge-chipping at the exit of the hole. For this purpose, a three-dimensional finite element model was developed, and a coupled field analysis was conducted to study the effect of four parameters, i.e., cutting depth, support length, applied voltage, and pulse-on time, on the maximum normal stress in the region where the edge-chipping initiates. The model is capable of predicting the edge-chipping thickness, and the results predicted by the model are in close agreement with the experiment results. This investigation recommends the use of a low voltage and low pulse-on time at the hole entrance and exit when applying G-ECDM to reduce the edge-chipping thickness. Moreover, the use of a full rigid support in the form of a base plate or sacrificial plate beneath the workpiece can postpone the initiation of chipping by providing support when the tool reaches the bottom layer of the workpiece, thereby reducing the edge-chipping thickness. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Manufacturing Springer Journals

Effect of machining parameters on edge-chipping during drilling of glass using grinding-aided electrochemical discharge machining (G-ECDM)

Advances in Manufacturing , Volume 6 (2) – Nov 22, 2017

Loading next page...
 
/lp/springer-journals/effect-of-machining-parameters-on-edge-chipping-during-drilling-of-ArbuTG5j40

References (22)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Manufacturing, Machines, Tools; Control, Robotics, Mechatronics; Nanotechnology and Microengineering
ISSN
2095-3127
eISSN
2195-3597
DOI
10.1007/s40436-017-0194-5
Publisher site
See Article on Publisher Site

Abstract

The problem of eliminating edge-chipping at the entrance and exit of the hole while drilling brittle materials is still a challenging task in different industries. Grinding-aided electrochemical discharge machining (G-ECDM) is a promising technology for drilling advanced hard-to-machine ceramics, glass, composites, and other brittle materials. Edge-chipping at the entrance of the hole can be fully eliminated by optimizing the machining parameters of G-ECDM. However, edge-chipping at the exit of the hole is difficult to eliminate during the drilling of ceramics and glass. This investigation suggests some practical ways to reduce edge-chipping at the exit of the hole. For this purpose, a three-dimensional finite element model was developed, and a coupled field analysis was conducted to study the effect of four parameters, i.e., cutting depth, support length, applied voltage, and pulse-on time, on the maximum normal stress in the region where the edge-chipping initiates. The model is capable of predicting the edge-chipping thickness, and the results predicted by the model are in close agreement with the experiment results. This investigation recommends the use of a low voltage and low pulse-on time at the hole entrance and exit when applying G-ECDM to reduce the edge-chipping thickness. Moreover, the use of a full rigid support in the form of a base plate or sacrificial plate beneath the workpiece can postpone the initiation of chipping by providing support when the tool reaches the bottom layer of the workpiece, thereby reducing the edge-chipping thickness.

Journal

Advances in ManufacturingSpringer Journals

Published: Nov 22, 2017

There are no references for this article.