Access the full text.
Sign up today, get DeepDyve free for 14 days.
Given a controlled stochastic process, the reachability set is the collection of all initial data from which the state process can be driven into a target set at a specified time. Differential properties of these sets are studied by the dynamic programming principle which is proved by the Jankov-von Neumann measurable selection theorem. This principle implies that the reachability sets satisfy a geometric partial differential equation, which is the analogue of the Hamilton-Jacobi-Bellman equation for this problem. By appropriately choosing the controlled process, this connection provides a stochastic representation for mean curvature type geometric flows. Another application is the super-replication problem in financial mathematics. Several applications in this direction are also discussed.
Journal of the European Mathematical Society – Springer Journals
Published: Sep 1, 2002
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.