Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract The influence of the vibrational relaxation on suppression of the Kelvin—Helmholtz instability in an evolving shear layer of a vibrationally nonequilibrium diatomic gas is studied numerically on the basis of equations of two-temperature aerohydrodynamics. Planar waves with the maximum growth rates, which were computed within the framework of a linearized system of equations of inviscid two-temperature gas dynamics, are used as the initial disturbances. It is shown that relaxation of the nonequilibrium vibrational mode at excitation levels, which can be obtained in diatomic gases in nozzle flows, in underexpanded jets, or in flows with moderate laser pumping, is accompanied by noticeable suppression of vortex disturbances. The associated relative enhancement of dissipation of kinetic energy of a large vortex structure averaged over its “lifetime” reaches approximately 13 %.
Thermophysics and Aeromechanics – Springer Journals
Published: Jun 1, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.