DFT, NBO, and NRT analysis of alkyl and benzyl β-silyl substituted cations: carbenium ion vs. silylium ion

DFT, NBO, and NRT analysis of alkyl and benzyl β-silyl substituted cations: carbenium ion vs.... The effect of β-trimethylsilyl (TMS) substituent on the structure, stability, natural charges, electrostatic potential map, natural bond orders, rotational energy barrier, and hyperconjugative interactions of five acyclic β-silyl carbocation derivatives of RR′C+–CH2Si(Me)3 including α-dimethyl 1 (R,R′ = Me), α-methyl phenyl 2 (R = Me, R′ = Ph), α-methyl para-aminophenyl 3 (R = Me, R′ = p-NH2Ph), α-methyl para-nitrophenyl 4 (R = Me, R′ = p-NO2Ph) and diphenyl 5 (R,R′ = Ph) was investigated in the gas phase and in solution using polarized continuum model (PCM) at B3LYP/6-311 ++G** level of theory. The resonance structures weighting of cations 1–5 were determined using natural resonance theory (NRT). The contribution of carbenium ion (RR′C+–CH2Si(Me)3) and silylium ion (RR′C=CH2 Si(Me) 3 + ) to the stability depend upon substituents. The former form dominants when R,R′ = Ph, but the latter is major the contributor when R,R′ = Me. The weighting of carbocation forms of β-silyl benzyl cation overwhelms silylium cation due to the delocalization of positive charge on the phenyl ring. The calculated molecular orbital (MO) diagrams, energy decomposition analysis (EDA) and 29Si and 13C nuclear magnetic resonance (NMR) chemical shifts complement these predictions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

DFT, NBO, and NRT analysis of alkyl and benzyl β-silyl substituted cations: carbenium ion vs. silylium ion

Loading next page...
 
/lp/springer-journals/dft-nbo-and-nrt-analysis-of-alkyl-and-benzyl-silyl-substituted-cations-Ww3Ta4N5Dm
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry; Catalysis; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0483-3
Publisher site
See Article on Publisher Site

Abstract

The effect of β-trimethylsilyl (TMS) substituent on the structure, stability, natural charges, electrostatic potential map, natural bond orders, rotational energy barrier, and hyperconjugative interactions of five acyclic β-silyl carbocation derivatives of RR′C+–CH2Si(Me)3 including α-dimethyl 1 (R,R′ = Me), α-methyl phenyl 2 (R = Me, R′ = Ph), α-methyl para-aminophenyl 3 (R = Me, R′ = p-NH2Ph), α-methyl para-nitrophenyl 4 (R = Me, R′ = p-NO2Ph) and diphenyl 5 (R,R′ = Ph) was investigated in the gas phase and in solution using polarized continuum model (PCM) at B3LYP/6-311 ++G** level of theory. The resonance structures weighting of cations 1–5 were determined using natural resonance theory (NRT). The contribution of carbenium ion (RR′C+–CH2Si(Me)3) and silylium ion (RR′C=CH2 Si(Me) 3 + ) to the stability depend upon substituents. The former form dominants when R,R′ = Ph, but the latter is major the contributor when R,R′ = Me. The weighting of carbocation forms of β-silyl benzyl cation overwhelms silylium cation due to the delocalization of positive charge on the phenyl ring. The calculated molecular orbital (MO) diagrams, energy decomposition analysis (EDA) and 29Si and 13C nuclear magnetic resonance (NMR) chemical shifts complement these predictions.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 19, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off