Development of Silica Gel-Supported Modified Macroporous Chitosan Membranes for Enzyme Immobilization and Their Characterization Analyses

Development of Silica Gel-Supported Modified Macroporous Chitosan Membranes for Enzyme... The present work was aimed at developing stability enhanced silica gel-supported macroporous chitosan membrane for immobilization of enzymes. The membrane was surface modified using various cross-linking agents for covalent immobilization of enzyme Bovine serum albumin. The results of FT-IR, UV–vis, and SEM analyses revealed the effect of cross-linking agents and confirmed the formation of modified membranes. The presence of silica gel as a support could provide a large surface area, and therefore, the enzyme could be immobilized only on the surface, and thus minimized the diffusion limitation problem. The resultant enzyme immobilized membranes were also characterized based on their activity retention, immobilization efficiency, and stability aspects. The immobilization process increased the activity of immobilized enzyme even higher than that of total (actual) activity of native enzyme. Thus, the obtained macroporous chitosan membranes in this study could act as a versatile host for various guest molecules. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Development of Silica Gel-Supported Modified Macroporous Chitosan Membranes for Enzyme Immobilization and Their Characterization Analyses

Loading next page...
 
/lp/springer-journals/development-of-silica-gel-supported-modified-macroporous-chitosan-3UkDQoTyBj
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-014-9671-y
Publisher site
See Article on Publisher Site

Abstract

The present work was aimed at developing stability enhanced silica gel-supported macroporous chitosan membrane for immobilization of enzymes. The membrane was surface modified using various cross-linking agents for covalent immobilization of enzyme Bovine serum albumin. The results of FT-IR, UV–vis, and SEM analyses revealed the effect of cross-linking agents and confirmed the formation of modified membranes. The presence of silica gel as a support could provide a large surface area, and therefore, the enzyme could be immobilized only on the surface, and thus minimized the diffusion limitation problem. The resultant enzyme immobilized membranes were also characterized based on their activity retention, immobilization efficiency, and stability aspects. The immobilization process increased the activity of immobilized enzyme even higher than that of total (actual) activity of native enzyme. Thus, the obtained macroporous chitosan membranes in this study could act as a versatile host for various guest molecules.

Journal

The Journal of Membrane BiologySpringer Journals

Published: May 21, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off