Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Development of Lumped Element Kinetic Inductance Detectors for the W-Band

Development of Lumped Element Kinetic Inductance Detectors for the W-Band We are developing a lumped element kinetic inductance detector (LEKID) array which can operate in the W-band (75 $$-$$ - 110 GHz) in order to perform ground-based cosmic microwave background (CMB) and mm-wave astronomical observations. The W-band is close to optimal in terms of contamination of the CMB from Galactic synchrotron, free-free, and thermal interstellar dust. In this band, the atmosphere has very good transparency, allowing interesting ground-based observations with large ( $$>$$ > 30 m) telescopes, achieving high angular resolution ( $$<$$ < 0.4 arcmin). In this work we describe the startup measurements devoted to the optimization of a W-band camera/spectrometer prototype for large aperture telescopes like the 64-m Sardinia Radio Telescope. In the process of selecting the best superconducting film for the LEKID, we characterized a 40-nm-thick aluminum 2-pixel array. We measured the minimum frequency which can break CPs (i.e., $$h\nu =2\Delta \left( T_\mathrm{c}\right) =3.5\,k_\mathrm{B}T_\mathrm{c}$$ h ν = 2 Δ T c = 3.5 k B T c ) obtaining $$\nu =95.5$$ ν = 95.5 GHz, which corresponds to a critical temperature of 1.31 K. This is not suitable to cover the entire W-band. For an 80-nm layer the minimum frequency decreases to 93.2 GHz, which corresponds to a critical temperature of 1.28 K; this value is still suboptimal for W-band operation. Further increase of the Al film thickness results in bad performance of the detector. We have thus considered a Titanium–Aluminum bi-layer [10-nm-thick Ti $$+$$ + 25-nm-thick Al, already tested in other laboratories (Catalano et al. in Astron Astrophys 580:A15, 2015)], for which we measured a critical temperature of 820 mK and a cut-on frequency of 65 GHz, so this solution allows operation in the entire W-band. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Low Temperature Physics Springer Journals

Development of Lumped Element Kinetic Inductance Detectors for the W-Band

Loading next page...
 
/lp/springer-journals/development-of-lumped-element-kinetic-inductance-detectors-for-the-w-xGD7dHe9YH

References (11)

  • A. Catalano, J. Goupy, H. Sueur, A. Benoȋt, O. Bourrion, M. Calvo, A. D’Addabbo, L. Dumoulin, F. Levy-Bertrand, J. Macias-P'erez, S. Marnieros, N. Ponthieu, A. Monfardini (2015)

    Bi-layer Kinetic Inductance Detectors for space observations between 80-120 GHz

    arXiv: Instrumentation and Methods for Astrophysics

  • A. Guth (1981)

    Inflationary universe: A possible solution to the horizon and flatness problems

    Physical Review D, 23

  • (2015)

    Planck Collaboration, Planck 2015 results

  • I. Colantoni, F. Bellini, L. Cardani, N. Casali, Marco Castellano, A. Coppolecchia, C. Cosmelli, A. Cruciani, A. D’Addabbo, S. Domizio, M. Martinez, C. Tomei, M. Vignati (2016)

    Design and Fabrication of the KID-Based Light Detectors of CALDER

    Journal of Low Temperature Physics, 184

  • Planck Adam, P. Ade, N. Aghanim, M. Alves, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. Banday, R. Barreiro, J. Bartlett, N. Bartolo, E. Battaner, K. Benabed, A. Benoit, A. Benoit-Lévy, J. Bernard, M. Bersanelli, P. Bielewicz, A. Bonaldi, L. Bonavera, J. Bond, J. Borrill, F. Bouchet, F. Boulanger, M. Bucher, C. Burigana, R. Butler, E. Calabrese, J. Cardoso, A. Catalano, A. Challinor, A. Chamballu, R. Chary, H. Chiang, P. Christensen, D. Clements, S. Colombi, L. Colombo, C. Combet, F. Couchot, A. Coulais, B. Crill, A. Curto, F. Cuttaia, L. Danese, R. Davies, R. Davis, P. Bernardis, A. Rosa, G. Zotti, J. Delabrouille, F. D'esert, C. Dickinson, J. Diego, H. Dole, S. Donzelli, O. Dor'e, M. Douspis, A. Ducout, X. Dupac, G. Efstathiou, F. Elsner, T. Ensslin, H. Eriksen, E. Falgarone, J. Fergusson, F. Finelli, O. Forni, M. Frailis, A. Fraisse, E. Franceschi, A. Frejsel, S. Galeotta, S. Galli, K. Ganga, T. Ghosh, M. Giard, Y. Giraud-H'eraud, E. Gjerløw, J. Gonz'alez-Nuevo, K. G'orski, S. Gratton, A. Gregorio, A. Gruppuso, J. Gudmundsson, F. Hansen, D. Hanson, D. Harrison, G. Helou, S. Henrot-Versill'e, C. Hern'andez-Monteagudo, D. Herranz, S. Hildebrandt, E. Hivon, M. Hobson, W. Holmes, A. Hornstrup, W. Hovest, K. Huffenberger, G. Hurier, A. Jaffe, T. Jaffe, W. Jones, M. Juvela, E. Keihanen, R. Keskitalo, T. Kisner, R. Kneissl, J. Knoche, M. Kunz, H. Kurki-Suonio, G. Lagache, A. Lahteenmaki, J. Lamarre, A. Lasenby, M. Lattanzi, C. Lawrence, M. Jeune, J. Leahy, R. Leonardi, J. Lesgourgues, F. Levrier, M. Liguori, P. Lilje, M. Linden-Vørnle, M. L'opez-Caniego, P. Lubin, J. Mac'ias-P'erez, G. Maggio, D. Maino, N. Mandolesi, A. Mangilli, D. Marshall, P. Martin, E. Mart'inez-Gonz'alez, S. Masi, S. Matarrese, P. Mazzotta, P. McGehee, P. Meinhold, A. Melchiorri, L. Mendes, A. Mennella, M. Migliaccio, S. Mitra, M. Miville-Deschênes, A. Moneti, L. Montier, G. Morgante, D. Mortlock, A. Moss, D. Munshi, J. Murphy, P. Naselsky, F. Nati, P. Natoli, C. Netterfield, H. Nørgaard-Nielsen, F. Noviello, D. Novikov, I. Novikov, E. Orlando, C. Oxborrow, F. Paci, L. Pagano, F. Pajot, R. Paladini, D. Paoletti, B. Partridge, F. Pasian, G. Patanchon, T. Pearson, O. Perdereau, L. Perotto, F. Perrotta, V. Pettorino, F. Piacentini, M. Piat, E. Pierpaoli, D. Pietrobon, S. Plaszczynski, E. Pointecouteau, G. Polenta, G. Pratt, G. Pr'ezeau, S. Prunet, J. Puget, J. Rachen, W. Reach, R. Rebolo, M. Reinecke, M. Remazeilles, C. Renault, A. Renzi, I. Ristorcelli, G. Rocha, C. Rosset, M. Rossetti, G. Roudier, J. Rubino-Mart'in, B. Rusholme, M. Sandri, D. Santos, M. Savelainen, G. Savini, D. Scott, M. Seiffert, E. Shellard, L. Spencer, V. Stolyarov, R. Stompor, A. Strong, R. Sudiwala, R. Sunyaev, D. Sutton, A. Suur-Uski, J. Sygnet, J. Tauber, L. Terenzi, L. Toffolatti, M. Tomasi, M. Tristram, M. Tucci, J. Tuovinen, G. Umana, L. Valenziano, J. Valiviita, B. Tent, P. Vielva, F. Villa, L. Wade, B. Wandelt, I. Wehus, A. Wilkinson, D. Yvon, A. Zacchei, A. Zonca (2015)

    Planck 2015 results - X. Diffuse component separation: Foreground maps

    Astronomy and Astrophysics, 594

  • S. Doyle, J. Naylon, P. Mauskopf, A. Porch, C. Dunscombe (2008)

    Lumped Element Kinetic Inductance Detectors

    Journal of Low Temperature Physics, 151

  • (1984)

    Physical Review D

  • S. Melhuish, L. Martinis, L. Piccirillo (2012)

    A Tiltable Single-Shot Miniature Dilution Refrigerator for Astrophysical Applications

    Cryogenics, 55

  • John Gilchrist, R. Isnard (1978)

    Cryogenics

    Digest of Literature on Dielectrics Volume 42 1978

  • R. Sunyaev, Y. Zeldovich (1970)

    Small-scale fluctuations of relic radiation

    Astrophysics and Space Science, 7

  • arXiv : 1502 . 01588 2 . A . H . Guth

Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Physics; Condensed Matter Physics; Characterization and Evaluation of Materials; Magnetism, Magnetic Materials
ISSN
0022-2291
eISSN
1573-7357
DOI
10.1007/s10909-015-1470-z
Publisher site
See Article on Publisher Site

Abstract

We are developing a lumped element kinetic inductance detector (LEKID) array which can operate in the W-band (75 $$-$$ - 110 GHz) in order to perform ground-based cosmic microwave background (CMB) and mm-wave astronomical observations. The W-band is close to optimal in terms of contamination of the CMB from Galactic synchrotron, free-free, and thermal interstellar dust. In this band, the atmosphere has very good transparency, allowing interesting ground-based observations with large ( $$>$$ > 30 m) telescopes, achieving high angular resolution ( $$<$$ < 0.4 arcmin). In this work we describe the startup measurements devoted to the optimization of a W-band camera/spectrometer prototype for large aperture telescopes like the 64-m Sardinia Radio Telescope. In the process of selecting the best superconducting film for the LEKID, we characterized a 40-nm-thick aluminum 2-pixel array. We measured the minimum frequency which can break CPs (i.e., $$h\nu =2\Delta \left( T_\mathrm{c}\right) =3.5\,k_\mathrm{B}T_\mathrm{c}$$ h ν = 2 Δ T c = 3.5 k B T c ) obtaining $$\nu =95.5$$ ν = 95.5 GHz, which corresponds to a critical temperature of 1.31 K. This is not suitable to cover the entire W-band. For an 80-nm layer the minimum frequency decreases to 93.2 GHz, which corresponds to a critical temperature of 1.28 K; this value is still suboptimal for W-band operation. Further increase of the Al film thickness results in bad performance of the detector. We have thus considered a Titanium–Aluminum bi-layer [10-nm-thick Ti $$+$$ + 25-nm-thick Al, already tested in other laboratories (Catalano et al. in Astron Astrophys 580:A15, 2015)], for which we measured a critical temperature of 820 mK and a cut-on frequency of 65 GHz, so this solution allows operation in the entire W-band.

Journal

Journal of Low Temperature PhysicsSpringer Journals

Published: Jan 13, 2016

There are no references for this article.