Decaying turbulence in soap films: energy and enstrophy evolution

Decaying turbulence in soap films: energy and enstrophy evolution This experimental study of quasi-two-dimensional grid turbulence in gravity-driven soap-film flow focuses on the differences between the behavior of the flow and the theoretical picture of two-dimensional turbulence. A previously unattainable quality of velocity field acquisition facilitates simultaneous measurement of velocity field features in the scale range spanning over two orders of magnitude. The highly-resolved flow field data are analyzed statistically in terms of velocity structure functions, as well as energy and enstrophy averages at different downstream positions. We find the rate of decay of these averages to be quantifiably greater than the predictions of the two-dimensional turbulence theory. This increased decay is likely to be the manifestation of the extra dissipation mechanism present in soap-film flows and prominent on the larger scales—air drag. The structure function analysis confirms the notion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Decaying turbulence in soap films: energy and enstrophy evolution

Loading next page...
 
/lp/springer-journals/decaying-turbulence-in-soap-films-energy-and-enstrophy-evolution-wFgejWNRRx
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0334-y
Publisher site
See Article on Publisher Site

Abstract

This experimental study of quasi-two-dimensional grid turbulence in gravity-driven soap-film flow focuses on the differences between the behavior of the flow and the theoretical picture of two-dimensional turbulence. A previously unattainable quality of velocity field acquisition facilitates simultaneous measurement of velocity field features in the scale range spanning over two orders of magnitude. The highly-resolved flow field data are analyzed statistically in terms of velocity structure functions, as well as energy and enstrophy averages at different downstream positions. We find the rate of decay of these averages to be quantifiably greater than the predictions of the two-dimensional turbulence theory. This increased decay is likely to be the manifestation of the extra dissipation mechanism present in soap-film flows and prominent on the larger scales—air drag. The structure function analysis confirms the notion.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 17, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off