Access the full text.
Sign up today, get DeepDyve free for 14 days.
Logic-based approaches to legal problem solving model the rule-governed nature of legal argumentation, justification, and other legal discourse but suffer from two key obstacles: the absence of efficient, scalable techniques for creating authoritative representations of legal texts as logical expressions; and the difficulty of evaluating legal terms and concepts in terms of the language of ordinary discourse. Data-centric techniques can be used to finesse the challenges of formalizing legal rules and matching legal predicates with the language of ordinary parlance by exploiting knowledge latent in legal corpora. However, these techniques typically are opaque and unable to support the rule-governed discourse needed for persuasive argumentation and justification. This paper distinguishes representative legal tasks to which each approach appears to be particularly well suited and proposes a hybrid model that exploits the complementarity of each.
Artificial Intelligence and Law – Springer Journals
Published: Mar 2, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.