CrimeTelescope: crime hotspot prediction based on urban and social media data fusion

CrimeTelescope: crime hotspot prediction based on urban and social media data fusion Crime is a complex social issue impacting a considerable number of individuals within a society. Preventing and reducing crime is a top priority in many countries. Given limited policing and crime reduction resources, it is often crucial to identify effective strategies to deploy the available resources. Towards this goal, crime hotspot prediction has previously been suggested. Crime hotspot prediction leverages past data in order to identify geographical areas susceptible of hosting crimes in the future. However, most of the existing techniques in crime hotspot prediction solely use historical crime records to identify crime hotspots, while ignoring the predictive power of other data such as urban or social media data. In this paper, we propose CrimeTelescope, a platform that predicts and visualizes crime hotspots based on a fusion of different data types. Our platform continuously collects crime data as well as urban and social media data on the Web. It then extracts key features from the collected data based on both statistical and linguistic analysis. Finally, it identifies crime hotspots by leveraging the extracted features, and offers visualizations of the hotspots on an interactive map. Based on real-world data collected from New York City, we show that combining different types of data can effectively improve the crime hotspot prediction accuracy (by up to 5.2%), compared to classical approaches based on historical crime records only. In addition, we demonstrate the usability of our platform through a System Usability Scale (SUS) survey on a full prototype of CrimeTelescope. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png World Wide Web Springer Journals

CrimeTelescope: crime hotspot prediction based on urban and social media data fusion

Loading next page...
 
/lp/springer-journals/crimetelescope-crime-hotspot-prediction-based-on-urban-and-social-1edwL6c73c
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Computer Science; Information Systems Applications (incl.Internet); Database Management; Operating Systems
ISSN
1386-145X
eISSN
1573-1413
D.O.I.
10.1007/s11280-017-0515-4
Publisher site
See Article on Publisher Site

Abstract

Crime is a complex social issue impacting a considerable number of individuals within a society. Preventing and reducing crime is a top priority in many countries. Given limited policing and crime reduction resources, it is often crucial to identify effective strategies to deploy the available resources. Towards this goal, crime hotspot prediction has previously been suggested. Crime hotspot prediction leverages past data in order to identify geographical areas susceptible of hosting crimes in the future. However, most of the existing techniques in crime hotspot prediction solely use historical crime records to identify crime hotspots, while ignoring the predictive power of other data such as urban or social media data. In this paper, we propose CrimeTelescope, a platform that predicts and visualizes crime hotspots based on a fusion of different data types. Our platform continuously collects crime data as well as urban and social media data on the Web. It then extracts key features from the collected data based on both statistical and linguistic analysis. Finally, it identifies crime hotspots by leveraging the extracted features, and offers visualizations of the hotspots on an interactive map. Based on real-world data collected from New York City, we show that combining different types of data can effectively improve the crime hotspot prediction accuracy (by up to 5.2%), compared to classical approaches based on historical crime records only. In addition, we demonstrate the usability of our platform through a System Usability Scale (SUS) survey on a full prototype of CrimeTelescope.

Journal

World Wide WebSpringer Journals

Published: Dec 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off