Controlled secret sharing protocol using a quantum cloning circuit

Controlled secret sharing protocol using a quantum cloning circuit We demonstrate the possibility of controlling the success probability of a secret sharing protocol using a quantum cloning circuit. The cloning circuit is used to clone the qubits containing the encoded information and en route to the intended recipients. The success probability of the protocol depends on the cloning parameters used to clone the qubits. We also establish a relation between the concurrence of initially prepared state, entanglement of the mixed state received by the receivers after cloning scheme and the cloning parameters of cloning machine. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Controlled secret sharing protocol using a quantum cloning circuit

Loading next page...
 
/lp/springer-journals/controlled-secret-sharing-protocol-using-a-quantum-cloning-circuit-zHWNqk080I
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-014-0791-1
Publisher site
See Article on Publisher Site

Abstract

We demonstrate the possibility of controlling the success probability of a secret sharing protocol using a quantum cloning circuit. The cloning circuit is used to clone the qubits containing the encoded information and en route to the intended recipients. The success probability of the protocol depends on the cloning parameters used to clone the qubits. We also establish a relation between the concurrence of initially prepared state, entanglement of the mixed state received by the receivers after cloning scheme and the cloning parameters of cloning machine.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jul 25, 2014

References

  • Can quantum-mechanical description of physical reality be considered complete?
    Einstein, A; Podolsky, B; Rosen, N
  • Quantum information and computation
    Bennett, CH; Divincenzo, D

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off