Access the full text.
Sign up today, get DeepDyve free for 14 days.
N-(3-Amino-4-methylphenyl)benzamide (1) is a crucial building blocks of many drug candidates. In this paper, a continuous flow microreactor system was developed to synthesize 1 and determine intrinsic reaction kinetics parameters. By screening the acylating reagents and reaction conditions, 1 was obtained by the selective acylation of 4-methylbenzene-1,3-diamine (2) with benzoic anhydride (3). Since the two amine groups in 2 are in different chemical environments, parallel by-products and serial by-products coexist, which makes the selective monoacylation process relatively complicated. To reveal the reaction process clearly, reaction rate constants and their 95% confidence intervals, activation energies, pre-exponential factors were acquired by kinetics study in microflow system. The established kinetic model can calculate the selectivity and conversion of the acylation reaction, which are in good agreement with the experimental results. Subsequently, the kinetic model was used to optimize reaction conditions, as a result, 1 was synthesized in the microreactor with a yield of 85.7% within 10 min.
Journal of Flow Chemistry – Springer Journals
Published: Sep 1, 2022
Keywords: Selective acylation; Continuous synthesis; Microreactor; Reaction kinetics; N-(3-Amino-4-methylphenyl)benzamide
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.